
Normalization for (Cartesian) Cubical Type Theory

Jonathan Sterling

MURI Team Meeting 2021

October 15, 2021

It’s been a year and a half since I last spoke to the MURI team...

Last time I
optimistically promised to do the following:

1. resolve Coquand’s conjecture?
normalization and decidability of judgmental equality for cubical type theory

2. develop new account of ML modules?
explore the connection between the phase splitting in PL and Artin gluing

Happy to report that we managed to do both.
Sterling, Jonathan and Carlo Angiuli (July 2021). “Normalization for Cubical Type Theory”. In: 2021

36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Los Alamitos, CA,
USA: IEEE Computer Society, pp. 1–15. doi: 10.1109/LICS52264.2021.9470719. arXiv:
2101.11479 [cs.LO].

Sterling, Jonathan and Robert Harper (Oct. 2021). “Logical Relations as Types: Proof-Relevant
Parametricity for Program Modules”. In: Journal of the ACM 68.6. issn: 0004-5411. doi:
10.1145/3474834. arXiv: 2010.08599 [cs.PL].

1 / 39

https://doi.org/10.1109/LICS52264.2021.9470719
https://arxiv.org/abs/2101.11479
https://doi.org/10.1145/3474834
https://arxiv.org/abs/2010.08599

It’s been a year and a half since I last spoke to the MURI team... Last time I
optimistically promised to do the following:

1. resolve Coquand’s conjecture?
normalization and decidability of judgmental equality for cubical type theory

2. develop new account of ML modules?
explore the connection between the phase splitting in PL and Artin gluing

Happy to report that we managed to do both.
Sterling, Jonathan and Carlo Angiuli (July 2021). “Normalization for Cubical Type Theory”. In: 2021

36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Los Alamitos, CA,
USA: IEEE Computer Society, pp. 1–15. doi: 10.1109/LICS52264.2021.9470719. arXiv:
2101.11479 [cs.LO].

Sterling, Jonathan and Robert Harper (Oct. 2021). “Logical Relations as Types: Proof-Relevant
Parametricity for Program Modules”. In: Journal of the ACM 68.6. issn: 0004-5411. doi:
10.1145/3474834. arXiv: 2010.08599 [cs.PL].

1 / 39

https://doi.org/10.1109/LICS52264.2021.9470719
https://arxiv.org/abs/2101.11479
https://doi.org/10.1145/3474834
https://arxiv.org/abs/2010.08599

It’s been a year and a half since I last spoke to the MURI team... Last time I
optimistically promised to do the following:

1. resolve Coquand’s conjecture?
normalization and decidability of judgmental equality for cubical type theory

2. develop new account of ML modules?
explore the connection between the phase splitting in PL and Artin gluing

Happy to report that we managed to do both.
Sterling, Jonathan and Carlo Angiuli (July 2021). “Normalization for Cubical Type Theory”. In: 2021

36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Los Alamitos, CA,
USA: IEEE Computer Society, pp. 1–15. doi: 10.1109/LICS52264.2021.9470719. arXiv:
2101.11479 [cs.LO].

Sterling, Jonathan and Robert Harper (Oct. 2021). “Logical Relations as Types: Proof-Relevant
Parametricity for Program Modules”. In: Journal of the ACM 68.6. issn: 0004-5411. doi:
10.1145/3474834. arXiv: 2010.08599 [cs.PL].

1 / 39

https://doi.org/10.1109/LICS52264.2021.9470719
https://arxiv.org/abs/2101.11479
https://doi.org/10.1145/3474834
https://arxiv.org/abs/2010.08599

The cubical hypothesis

HoTT consolidates many semantical advances that make type theory more broadly
applicable: univalence, HITs, good quotients, function extensionality, function
comprehension!

But HoTT’s equational theory is too weak to compute with. Cubical type theory1
designed to combine good HoTT semantics with good computational properties.

Success? We managed to implement it in redtt [S., Favonia] and our Swedish
colleagues built Cubical Agda. But implementations hinge on Coquand’s conjecture:

Conjecture (Cohen, Coquand, Huber, and Mörtberg, 2017)
Cubical type theory enjoys normalization and decidable judgmental equality.

1Bezem, Coquand, and Huber (2014), Angiuli, Hou (Favonia), and Harper (2017), Cohen, Coquand,
Huber, and Mörtberg (2017), Awodey (2018), and Angiuli, Brunerie, Coquand, Hou (Favonia), Harper,
and Licata (2021)

2 / 39

The cubical hypothesis

HoTT consolidates many semantical advances that make type theory more broadly
applicable: univalence, HITs, good quotients, function extensionality, function
comprehension!

But HoTT’s equational theory is too weak to compute with. Cubical type theory1
designed to combine good HoTT semantics with good computational properties.

Success? We managed to implement it in redtt [S., Favonia] and our Swedish
colleagues built Cubical Agda. But implementations hinge on Coquand’s conjecture:

Conjecture (Cohen, Coquand, Huber, and Mörtberg, 2017)
Cubical type theory enjoys normalization and decidable judgmental equality.

1Bezem, Coquand, and Huber (2014), Angiuli, Hou (Favonia), and Harper (2017), Cohen, Coquand,
Huber, and Mörtberg (2017), Awodey (2018), and Angiuli, Brunerie, Coquand, Hou (Favonia), Harper,
and Licata (2021)

2 / 39

We have now positively resolved Coquand’s normalization and decidability
conjecture for cubical type theory.

The main ingredient is a new technique called synthetic Tait computability (STC)
abstracting Artin gluing and logical relations.

3 / 39

We have now positively resolved Coquand’s normalization and decidability
conjecture for cubical type theory.

The main ingredient is a new technique called synthetic Tait computability (STC)
abstracting Artin gluing and logical relations.

3 / 39

Computation in TT: prior art

Prior state of the art (Huber, 2018; Angiuli, Hou (Favonia), and Harper, 2018):

Theorem (Cubical canonicity)
If ~ı : In ` M(~ı) : bool is a closed n-cube of booleans, then either
~ı : In ` M(~ı) ≡ tt : bool or ~ı : In ` M(~ı) ≡ ff : bool.

Hence TT is programming language.

Cubical canonicity is only about computation of closed n-cubes. But
implementation (type checking, elaboration) requires computation in arbitrary
contexts Γ, i.e. normalization.

4 / 39

Main results

I have proved the following suite of results for TT with a countable cumulative
hierarchy of universes:2

Theorem (Normalization)
There is a computable function assigning to every type Γ ` A and every term Γ ` a : A
of TT a unique normal form.

Corollary (Decidability of equality)
Judgmental equality Γ ` A ≡ B and Γ ` a ≡ b : A in TT is decidable.

Corollary (Injectivity of type constructors)
If Γ ` Π(A,B) ≡ Π(A′,B′) then Γ ` A ≡ A′ and Γ, x : A ` B(x) ≡ B′(x).

2The preliminary result for TT without universes is j.w.w. Angiuli published in LICS’21 (Sterling and
Angiuli, 2021). The full result is in my dissertation (Sterling, 2021).

5 / 39

Proving metatheorems using Tait’s method

In 1967, Tait introduced his method of computability;3 Tait computability has
remained our only scalable tool for proving metatheorems for logics and type theory
(canonicity, normalization, parametricity, etc.).4

Idea: an “interpretation” that equips each type A with an predicate JAK on elements
of A; then show that all terms preserve the predicates.

1. First choose the predicate at base type to make soundness of the interpretation
imply the desired metatheorem.

2. Then “draw the rest of the owl”.

3a.k.a. logical relations/predicates
4Gentzen’s cut elimination an elegant alternative in some cases, but rarely scales beyond toy examples.

6 / 39

Proving metatheorems using Tait’s method

In 1967, Tait introduced his method of computability;3 Tait computability has
remained our only scalable tool for proving metatheorems for logics and type theory
(canonicity, normalization, parametricity, etc.).4

Idea: an “interpretation” that equips each type A with an predicate JAK on elements
of A; then show that all terms preserve the predicates.

1. First choose the predicate at base type to make soundness of the interpretation
imply the desired metatheorem.

2. Then “draw the rest of the owl”.

3a.k.a. logical relations/predicates
4Gentzen’s cut elimination an elegant alternative in some cases, but rarely scales beyond toy examples.

6 / 39

Operational Tait computability

First define operational semantics 7→∗ on raw closed terms.

Example (Canonicity)
To prove canonicity, we choose the following predicates:

JboolK(b) := (b 7→∗ tt ∨ b 7→∗ ff)

JA→ BK(f) := (∀x : A.JAK(x)→ JBK(f (x)))

Q1: given a type A, what is the domain of JAK? closed terms, open terms, typed, ??
Q2: what properties must JAK satisfy? closure under subst., ren., head expansion, ??
Q3: does our proof actually depend on the chosen transition relation 7→∗?
Q4: why are the predicates attached to connectives (→,×, . . .) the way they are?

(None of the above have satisfactory answers in operational Tait computability.)

7 / 39

Operational Tait computability

First define operational semantics 7→∗ on raw closed terms.

Example (Canonicity)
To prove canonicity, we choose the following predicates:

JboolK(b) := (b 7→∗ tt ∨ b 7→∗ ff)

JA→ BK(f) := (∀x : A.JAK(x)→ JBK(f (x)))

Q1: given a type A, what is the domain of JAK? closed terms, open terms, typed, ??

Q2: what properties must JAK satisfy? closure under subst., ren., head expansion, ??
Q3: does our proof actually depend on the chosen transition relation 7→∗?
Q4: why are the predicates attached to connectives (→,×, . . .) the way they are?

(None of the above have satisfactory answers in operational Tait computability.)

7 / 39

Operational Tait computability

First define operational semantics 7→∗ on raw closed terms.

Example (Canonicity)
To prove canonicity, we choose the following predicates:

JboolK(b) := (b 7→∗ tt ∨ b 7→∗ ff)

JA→ BK(f) := (∀x : A.JAK(x)→ JBK(f (x)))

Q1: given a type A, what is the domain of JAK? closed terms, open terms, typed, ??
Q2: what properties must JAK satisfy? closure under subst., ren., head expansion, ??

Q3: does our proof actually depend on the chosen transition relation 7→∗?
Q4: why are the predicates attached to connectives (→,×, . . .) the way they are?

(None of the above have satisfactory answers in operational Tait computability.)

7 / 39

Operational Tait computability

First define operational semantics 7→∗ on raw closed terms.

Example (Canonicity)
To prove canonicity, we choose the following predicates:

JboolK(b) := (b 7→∗ tt ∨ b 7→∗ ff)

JA→ BK(f) := (∀x : A.JAK(x)→ JBK(f (x)))

Q1: given a type A, what is the domain of JAK? closed terms, open terms, typed, ??
Q2: what properties must JAK satisfy? closure under subst., ren., head expansion, ??
Q3: does our proof actually depend on the chosen transition relation 7→∗?

Q4: why are the predicates attached to connectives (→,×, . . .) the way they are?

(None of the above have satisfactory answers in operational Tait computability.)

7 / 39

Operational Tait computability

First define operational semantics 7→∗ on raw closed terms.

Example (Canonicity)
To prove canonicity, we choose the following predicates:

JboolK(b) := (b 7→∗ tt ∨ b 7→∗ ff)

JA→ BK(f) := (∀x : A.JAK(x)→ JBK(f (x)))

Q1: given a type A, what is the domain of JAK? closed terms, open terms, typed, ??
Q2: what properties must JAK satisfy? closure under subst., ren., head expansion, ??
Q3: does our proof actually depend on the chosen transition relation 7→∗?
Q4: why are the predicates attached to connectives (→,×, . . .) the way they are?

(None of the above have satisfactory answers in operational Tait computability.)

7 / 39

Operational Tait computability

First define operational semantics 7→∗ on raw closed terms.

Example (Canonicity)
To prove canonicity, we choose the following predicates:

JboolK(b) := (b 7→∗ tt ∨ b 7→∗ ff)

JA→ BK(f) := (∀x : A.JAK(x)→ JBK(f (x)))

Q1: given a type A, what is the domain of JAK? closed terms, open terms, typed, ??
Q2: what properties must JAK satisfy? closure under subst., ren., head expansion, ??
Q3: does our proof actually depend on the chosen transition relation 7→∗?
Q4: why are the predicates attached to connectives (→,×, . . .) the way they are?

(None of the above have satisfactory answers in operational Tait computability.)

7 / 39

The outer limits of operational Tait computability

Specifying and verifying the domain and closure conditions of computability predicates
for cubical canonicity proved nearly intractable, pace Huber (2018) and Angiuli, Hou
(Favonia), and Harper (2018).

Motivated S., Angiuli, and Gratzer to pursue an algebraic/gluing-based version of Tait
computability for TT5 à la Coquand (2018), as suggested by Awodey.

Idea: work only with quotiented typed terms, make computability predicates
proof-relevant. Outcome: all difficulties disappeared for cubical canonicity,
normalization still required fundamentally new ideas.

Synthetic Tait computability = type theoretic abstraction of the algebraic gluing
argument à la Orton and Pitts (2016).

5Sterling, Angiuli, and Gratzer (2019)
8 / 39

Introducing synthetic Tait computability

What is synthetic about synthetic Tait computability?

Analytic methods explain domain objects in terms of their encoding as something
totally different. Synthetic methods explain domain objects in terms of their relation
to each other.

analytic synthetic
geometry the Cartesian plane, Rn Euclid’s postulates
metatheory logical relations, Artin gluing STC

STC abstracts logical relations by isolating the relationship between syntax and
semantics as a pair of modalities.

Expressive enough to recover and simplify existing LR arguments. More importantly,
STC gave me new geometrical intuitions that I used to solve cubical normalization.

9 / 39

Introducing synthetic Tait computability

What is synthetic about synthetic Tait computability?

Analytic methods explain domain objects in terms of their encoding as something
totally different. Synthetic methods explain domain objects in terms of their relation
to each other.

analytic synthetic
geometry the Cartesian plane, Rn Euclid’s postulates
metatheory logical relations, Artin gluing STC

STC abstracts logical relations by isolating the relationship between syntax and
semantics as a pair of modalities.

Expressive enough to recover and simplify existing LR arguments. More importantly,
STC gave me new geometrical intuitions that I used to solve cubical normalization.

9 / 39

Introducing synthetic Tait computability

What is synthetic about synthetic Tait computability?

Analytic methods explain domain objects in terms of their encoding as something
totally different. Synthetic methods explain domain objects in terms of their relation
to each other.

analytic synthetic
geometry the Cartesian plane, Rn Euclid’s postulates
metatheory logical relations, Artin gluing STC

STC abstracts logical relations by isolating the relationship between syntax and
semantics as a pair of modalities.

Expressive enough to recover and simplify existing LR arguments. More importantly,
STC gave me new geometrical intuitions that I used to solve cubical normalization.

9 / 39

Introducing synthetic Tait computability

What is synthetic about synthetic Tait computability?

Analytic methods explain domain objects in terms of their encoding as something
totally different. Synthetic methods explain domain objects in terms of their relation
to each other.

analytic synthetic
geometry the Cartesian plane, Rn Euclid’s postulates
metatheory logical relations, Artin gluing STC

STC abstracts logical relations by isolating the relationship between syntax and
semantics as a pair of modalities.6

Expressive enough to recover and simplify existing LR arguments. More importantly,
STC gave me new geometrical intuitions that I used to solve cubical normalization.

6(For experts: STC is the internal language of topoi equipped with open/closed partitions.)
9 / 39

Mixing syntax and semantics

What is really going on in Tait computability? We are immersing syntax in a more
powerful language (the language of computability predicates) that can express the
semantic invariants we want.

(Smoother to develop and use if we generalize to computability structures, i.e.
proof-relevant computability predicates.7)

e.g. the computability structure of the booleans:

JboolK :=
(

x : bool
)
× x = tt + x = ff

7cf. logical relations for universes and strong sums
10 / 39

Mixing syntax and semantics

What is really going on in Tait computability? We are immersing syntax in a more
powerful language (the language of computability predicates) that can express the
semantic invariants we want.

(Smoother to develop and use if we generalize to computability structures, i.e.
proof-relevant computability predicates.7)

e.g. the computability structure of the booleans:

JboolK :=
(

x : bool
)
× x = tt + x = ff

7cf. logical relations for universes and strong sums
10 / 39

Piecing together syntax and semantics
Computability structures built from syntax and semantics .

These can be mixed
and matched, but the satisfy some laws:

I Both − and − are lex idempotent monads.

I Complementarity: semantic things are syntactically trivial, i.e. A ∼= unit but
not the other way around.

I Fracture: any computability structure A can be reconstructed from A , A ,

and A .

A

A

A

A

11 / 39

Piecing together syntax and semantics
Computability structures built from syntax and semantics . These can be mixed
and matched, but the satisfy some laws:
I Both − and − are lex idempotent monads.8

I Complementarity: semantic things are syntactically trivial, i.e. A ∼= unit but
not the other way around.

I Fracture: any computability structure A can be reconstructed from A , A ,

and A .

A

A

A

A

8They are open and closed modalities in the sense of topos theory (Artin, Grothendieck, and Verdier,
1972; Mac Lane and Moerdijk, 1992; Rijke, Shulman, and Spitters, 2020).

11 / 39

Piecing together syntax and semantics
Computability structures built from syntax and semantics . These can be mixed
and matched, but the satisfy some laws:
I Both − and − are lex idempotent monads.8

I Complementarity: semantic things are syntactically trivial, i.e. A ∼= unit but
not the other way around.

I Fracture: any computability structure A can be reconstructed from A , A ,

and A .

A

A

A

A

8They are open and closed modalities in the sense of topos theory (Artin, Grothendieck, and Verdier,
1972; Mac Lane and Moerdijk, 1992; Rijke, Shulman, and Spitters, 2020).

11 / 39

Piecing together syntax and semantics
Computability structures built from syntax and semantics . These can be mixed
and matched, but the satisfy some laws:
I Both − and − are lex idempotent monads.8

I Complementarity: semantic things are syntactically trivial, i.e. A ∼= unit but
not the other way around.

I Fracture: any computability structure A can be reconstructed from A , A ,

and A .

A

A

A

A
8They are open and closed modalities in the sense of topos theory (Artin, Grothendieck, and Verdier,
1972; Mac Lane and Moerdijk, 1992; Rijke, Shulman, and Spitters, 2020).

11 / 39

The language of synthetic Tait computability

Definition
STC = type theory + modalities − / − that behave as above.

Equivalently, extend type theory by a generic proposition ¶ : Prop and define
A := A¶ and A := A ∪A×¶ ¶.

Internal language of topoi formed by Artin gluing (Artin, Grothendieck, and Verdier,
1972; Wraith, 1974; Rijke, Shulman, and Spitters, 2020).

12 / 39

The language of synthetic Tait computability

Definition
STC = type theory + modalities − / − that behave as above.

Equivalently, extend type theory by a generic proposition ¶ : Prop and define
A := A¶ and A := A ∪A×¶ ¶.

Internal language of topoi formed by Artin gluing (Artin, Grothendieck, and Verdier,
1972; Wraith, 1974; Rijke, Shulman, and Spitters, 2020).

12 / 39

A recipe for using STC

Analogous to how people use SDG, etc. We adapt Kock’s recipe:
1. Prove the decisive parts of your theorem synthetically in STC.
2. Choose a topos model of STC (i.e. an Artin gluing).
3. Extract your external result from the STC model.

An important part is to choose the right model of STC.

13 / 39

STC models as mapping cylinders
Most useful STC models arise as the closed mapping cylinder (Johnstone, 1977) of a
morphism of topoi that we think of as a “figure shape” α : A T̂ :9

A

A× S

(open immersion)

T̂

M•α

α

(open immersion)

A

(closed immersion)

Above T̂ is the “syntactic topos”. What do we mean by “figure shape”, and how do
we choose it?

9Equivalently, this is the Artin gluing {SetA} ↓ α∗ of the inverse image functor α∗ : SetT̂ SetA.
14 / 39

Choosing a figure shape, abstractly
Let’s say we are proving something about the sort Tp : T of types. Usually we cannot
state or prove our theorem for all figures X Tp but only for certain figures, e.g. only
point-shaped figures (canonicity) or context-shaped figures (normalization).

A figure shape α : A T̂ is chosen to restrict syntactic objects like Tp to their
“functors of A-shaped points” where A embodies the permitted figures.

α∗y(Tp)

A

y(Tp)

T̂
α

[This is what was going on in the 1990s literature, “Kripke relations of varying arity” (Jung and
Tiuryn, 1993; Fiore, 2002).]

15 / 39

Choosing a figure shape, concretely

Ψ M : A ⇓ V

canonicity: A ∈ {nat}; normalization: A ∈ {Ψ ` type}

canonicity: V ∈ N; normalization: V ∈
{

Ψ βη
nf A

}
canonicity: Γ ∈ {·}; cubical canonicity: Γ ∈ {In | n ∈ N}; normalization: Γ ∈ {` ctx}

element

observationcontext

16 / 39

Choosing a figure shape, concretely

Ψ M : A ⇓ V

canonicity: A ∈ {nat}; normalization: A ∈ {Ψ ` type}

canonicity: V ∈ N; normalization: V ∈
{

Ψ βη
nf A

}
canonicity: Γ ∈ {·}; cubical canonicity: Γ ∈ {In | n ∈ N}; normalization: Γ ∈ {` ctx}

element

observationcontext

16 / 39

Choosing a figure shape, concretely

Ψ M : A ⇓ V

canonicity: A ∈ {nat}; normalization: A ∈ {Ψ ` type}

canonicity: V ∈ N; normalization: V ∈
{

Ψ βη
nf A

}
canonicity: Γ ∈ {·}; cubical canonicity: Γ ∈ {In | n ∈ N}; normalization: Γ ∈ {` ctx}

element

observationcontext

16 / 39

Choosing a figure shape, concretely

Ψ M : A ⇓ V

canonicity: A ∈ {nat}; normalization: A ∈ {Ψ ` type}

canonicity: V ∈ N; normalization: V ∈
{

Ψ βη
nf A

}
canonicity: Γ ∈ {·}; cubical canonicity: Γ ∈ {In | n ∈ N}; normalization: Γ ∈ {` ctx}

element

observationcontext

16 / 39

Choosing a figure shape, concretely

Ψ M : A ⇓ V

canonicity: A ∈ {nat}; normalization: A ∈ {Ψ ` type}

canonicity: V ∈ N; normalization: V ∈
{

Ψ βη
nf A

}
canonicity: Γ ∈ {·}; cubical canonicity: Γ ∈ {In | n ∈ N}; normalization: Γ ∈ {` ctx}

element

observationcontext

16 / 39

Choosing a figure shape, concretely

Ψ M : A ⇓ V

canonicity: A ∈ {nat}; normalization: A ∈ {Ψ ` type}

canonicity: V ∈ N; normalization: V ∈
{

Ψ βη
nf A

}
canonicity: Γ ∈ {·}; cubical canonicity: Γ ∈ {In | n ∈ N}; normalization: Γ ∈ {` ctx}

element

observationcontext

16 / 39

Choosing a figure shape, concretely

Ψ M : A ⇓ V

canonicity: A ∈ {nat}; normalization: A ∈ {Ψ ` type}

canonicity: V ∈ N; normalization: V ∈
{

Ψ βη
nf A

}
canonicity: Γ ∈ {·}; cubical canonicity: Γ ∈ {In | n ∈ N}; normalization: Γ ∈ {` ctx}

element

observationcontext

16 / 39

Stability (or lack thereof) of observation

x : nat x : nat ⇓ var(x)

In plain type theory, neutral observations (elimination forms blocked on variables) are
closed under renaming, but not full substitution.

Therefore normalization takes place over the category R of contexts and structural
renamings (weakening, swapping, contraction).

17 / 39

Stability (or lack thereof) of observation

x : nat x : nat ⇓ var(x)·
[fib(9)/x]

In plain type theory, neutral observations (elimination forms blocked on variables) are
closed under renaming, but not full substitution.

Therefore normalization takes place over the category R of contexts and structural
renamings (weakening, swapping, contraction).

17 / 39

Stability (or lack thereof) of observation

x : nat x : nat ⇓ var(x)·
[fib(9)/x]

fib(9) : nat

In plain type theory, neutral observations (elimination forms blocked on variables) are
closed under renaming, but not full substitution.

Therefore normalization takes place over the category R of contexts and structural
renamings (weakening, swapping, contraction).

17 / 39

Stability (or lack thereof) of observation

x : nat x : nat ⇓ var(x)·
[fib(9)/x]

fib(9) : nat ???

In plain type theory, neutral observations (elimination forms blocked on variables) are
closed under renaming, but not full substitution.

Therefore normalization takes place over the category R of contexts and structural
renamings (weakening, swapping, contraction).

17 / 39

Stability (or lack thereof) of observation

x : nat x : nat ⇓ var(x)·
[fib(9)/x]

fib(9) : nat ???

In plain type theory, neutral observations (elimination forms blocked on variables) are
closed under renaming, but not full substitution.

Therefore normalization takes place over the category R of contexts and structural
renamings (weakening, swapping, contraction).

17 / 39

Stability (or lack thereof) of observation

x : nat x : nat ⇓ var(x)·
[fib(9)/x]

fib(9) : nat ???

In plain type theory, neutral observations (elimination forms blocked on variables) are
closed under renaming, but not full substitution.

Therefore normalization takes place over the category R of contexts and structural
renamings (weakening, swapping, contraction).

17 / 39

What goes wrong for TT?

Unfortunately, just removing the substitutions for which neutral observations are
unstable is not practicable for TT. The problem lies with the interval:

p : fib =nat→nat fib, i : I (p @ i) 9 : nat ⇓ app(pathapp(var(p), i), su9(ze))

We shouldn’t remove [0/i], [1/i] from the category of contexts and renamings because
we need I to restrict to something representable in Pr(R), c.f. tininess
criterion (Licata, Orton, Pitts, and Spitters, 2018).

18 / 39

What goes wrong for TT?

Unfortunately, just removing the substitutions for which neutral observations are
unstable is not practicable for TT. The problem lies with the interval:

p : fib =nat→nat fib, i : I (p @ i) 9 : nat ⇓ app(pathapp(var(p), i), su9(ze))

We shouldn’t remove [0/i], [1/i] from the category of contexts and renamings because
we need I to restrict to something representable in Pr(R), c.f. tininess
criterion (Licata, Orton, Pitts, and Spitters, 2018).

18 / 39

What goes wrong for TT?

Unfortunately, just removing the substitutions for which neutral observations are
unstable is not practicable for TT. The problem lies with the interval:

p : fib =nat→nat fib, i : I (p @ i) 9 : nat ⇓ app(pathapp(var(p), i), su9(ze))

p : fib =nat→nat fib

[0/i]

We shouldn’t remove [0/i], [1/i] from the category of contexts and renamings because
we need I to restrict to something representable in Pr(R), c.f. tininess
criterion (Licata, Orton, Pitts, and Spitters, 2018).

18 / 39

What goes wrong for TT?

Unfortunately, just removing the substitutions for which neutral observations are
unstable is not practicable for TT. The problem lies with the interval:

p : fib =nat→nat fib, i : I (p @ i) 9 : nat ⇓ app(pathapp(var(p), i), su9(ze))

p : fib =nat→nat fib

[0/i] fib(9) : nat

We shouldn’t remove [0/i], [1/i] from the category of contexts and renamings because
we need I to restrict to something representable in Pr(R), c.f. tininess
criterion (Licata, Orton, Pitts, and Spitters, 2018).

18 / 39

What goes wrong for TT?

Unfortunately, just removing the substitutions for which neutral observations are
unstable is not practicable for TT. The problem lies with the interval:

p : fib =nat→nat fib, i : I (p @ i) 9 : nat ⇓ app(pathapp(var(p), i), su9(ze))

p : fib =nat→nat fib

[0/i] fib(9) : nat ???

We shouldn’t remove [0/i], [1/i] from the category of contexts and renamings because
we need I to restrict to something representable in Pr(R), c.f. tininess
criterion (Licata, Orton, Pitts, and Spitters, 2018).

18 / 39

What goes wrong for TT?

Unfortunately, just removing the substitutions for which neutral observations are
unstable is not practicable for TT. The problem lies with the interval:

p : fib =nat→nat fib, i : I (p @ i) 9 : nat ⇓ app(pathapp(var(p), i), su9(ze))

p : fib =nat→nat fib

[0/i] fib(9) : nat ???

We shouldn’t remove [0/i], [1/i] from the category of contexts and renamings because
we need I to restrict to something representable in Pr(R), c.f. tininess
criterion (Licata, Orton, Pitts, and Spitters, 2018).

18 / 39

The power of dialectical thinking: geometrical negation
Thesis: neutrals need to have a cubical substitution action (tininess of I).

Antithesis: positive neutrality is not a cubical notion: under face maps [0/i], [1/i] a
neutral observation can cease ‘being neutral’ and needs to ‘compute’.

Synthesis: the conditions away from which a term is neutral are cubical. Write ∂E for
this frontier of instability:

∂(var(x)) = ⊥
∂(app(E ,M)) = ∂E

∂(fst(E)) = ∂E
∂(pathapp(E , r)) = ∂E ∨ (r = 0) ∨ (r = 1)

Therefore we define an inductive family Neφ(A) with Neφ(A) ∼= A comprised of
neutrals e with ∂e = φ. Traditional neutrals Ne⊥(A); to model destabilization,
Ne>(A) ∼= A .

19 / 39

The power of dialectical thinking: geometrical negation
Thesis: neutrals need to have a cubical substitution action (tininess of I).

Antithesis: positive neutrality is not a cubical notion: under face maps [0/i], [1/i] a
neutral observation can cease ‘being neutral’ and needs to ‘compute’.

Synthesis: the conditions away from which a term is neutral are cubical. Write ∂E for
this frontier of instability:

∂(var(x)) = ⊥
∂(app(E ,M)) = ∂E

∂(fst(E)) = ∂E
∂(pathapp(E , r)) = ∂E ∨ (r = 0) ∨ (r = 1)

Therefore we define an inductive family Neφ(A) with Neφ(A) ∼= A comprised of
neutrals e with ∂e = φ. Traditional neutrals Ne⊥(A); to model destabilization,
Ne>(A) ∼= A .

19 / 39

The power of dialectical thinking: geometrical negation
Thesis: neutrals need to have a cubical substitution action (tininess of I).

Antithesis: positive neutrality is not a cubical notion: under face maps [0/i], [1/i] a
neutral observation can cease ‘being neutral’ and needs to ‘compute’.

Synthesis: the conditions away from which a term is neutral are cubical. Write ∂E for
this frontier of instability:

∂(var(x)) = ⊥
∂(app(E ,M)) = ∂E

∂(fst(E)) = ∂E
∂(pathapp(E , r)) = ∂E ∨ (r = 0) ∨ (r = 1)

Therefore we define an inductive family Neφ(A) with Neφ(A) ∼= A comprised of
neutrals e with ∂e = φ. Traditional neutrals Ne⊥(A); to model destabilization,
Ne>(A) ∼= A .

19 / 39

The power of dialectical thinking: geometrical negation
Thesis: neutrals need to have a cubical substitution action (tininess of I).

Antithesis: positive neutrality is not a cubical notion: under face maps [0/i], [1/i] a
neutral observation can cease ‘being neutral’ and needs to ‘compute’.

Synthesis: the conditions away from which a term is neutral are cubical. Write ∂E for
this frontier of instability:

∂(var(x)) = ⊥

∂(app(E ,M)) = ∂E
∂(fst(E)) = ∂E

∂(pathapp(E , r)) = ∂E ∨ (r = 0) ∨ (r = 1)

Therefore we define an inductive family Neφ(A) with Neφ(A) ∼= A comprised of
neutrals e with ∂e = φ. Traditional neutrals Ne⊥(A); to model destabilization,
Ne>(A) ∼= A .

19 / 39

The power of dialectical thinking: geometrical negation
Thesis: neutrals need to have a cubical substitution action (tininess of I).

Antithesis: positive neutrality is not a cubical notion: under face maps [0/i], [1/i] a
neutral observation can cease ‘being neutral’ and needs to ‘compute’.

Synthesis: the conditions away from which a term is neutral are cubical. Write ∂E for
this frontier of instability:

∂(var(x)) = ⊥
∂(app(E ,M)) = ∂E

∂(fst(E)) = ∂E
∂(pathapp(E , r)) = ∂E ∨ (r = 0) ∨ (r = 1)

Therefore we define an inductive family Neφ(A) with Neφ(A) ∼= A comprised of
neutrals e with ∂e = φ. Traditional neutrals Ne⊥(A); to model destabilization,
Ne>(A) ∼= A .

19 / 39

The power of dialectical thinking: geometrical negation
Thesis: neutrals need to have a cubical substitution action (tininess of I).

Antithesis: positive neutrality is not a cubical notion: under face maps [0/i], [1/i] a
neutral observation can cease ‘being neutral’ and needs to ‘compute’.

Synthesis: the conditions away from which a term is neutral are cubical. Write ∂E for
this frontier of instability:

∂(var(x)) = ⊥
∂(app(E ,M)) = ∂E

∂(fst(E)) = ∂E

∂(pathapp(E , r)) = ∂E ∨ (r = 0) ∨ (r = 1)

Therefore we define an inductive family Neφ(A) with Neφ(A) ∼= A comprised of
neutrals e with ∂e = φ. Traditional neutrals Ne⊥(A); to model destabilization,
Ne>(A) ∼= A .

19 / 39

The power of dialectical thinking: geometrical negation
Thesis: neutrals need to have a cubical substitution action (tininess of I).

Antithesis: positive neutrality is not a cubical notion: under face maps [0/i], [1/i] a
neutral observation can cease ‘being neutral’ and needs to ‘compute’.

Synthesis: the conditions away from which a term is neutral are cubical. Write ∂E for
this frontier of instability:

∂(var(x)) = ⊥
∂(app(E ,M)) = ∂E

∂(fst(E)) = ∂E
∂(pathapp(E , r)) = ∂E ∨ (r = 0) ∨ (r = 1)

Therefore we define an inductive family Neφ(A) with Neφ(A) ∼= A comprised of
neutrals e with ∂e = φ. Traditional neutrals Ne⊥(A); to model destabilization,
Ne>(A) ∼= A .

19 / 39

The power of dialectical thinking: geometrical negation
Thesis: neutrals need to have a cubical substitution action (tininess of I).

Antithesis: positive neutrality is not a cubical notion: under face maps [0/i], [1/i] a
neutral observation can cease ‘being neutral’ and needs to ‘compute’.

Synthesis: the conditions away from which a term is neutral are cubical. Write ∂E for
this frontier of instability:

∂(var(x)) = ⊥
∂(app(E ,M)) = ∂E

∂(fst(E)) = ∂E
∂(pathapp(E , r)) = ∂E ∨ (r = 0) ∨ (r = 1)

Therefore we define an inductive family Neφ(A) with Neφ(A) ∼= A comprised of
neutrals e with ∂e = φ. Traditional neutrals Ne⊥(A); to model destabilization,
Ne>(A) ∼= A .

19 / 39

Normalization via Tait’s yoga

Tait (1967) introduced the famous saturation yoga for normalization:

Ne(A) ⊆ JAK ⊆ Nf(A)

20 / 39

Normalization via Tait’s yoga

Tait (1967) introduced the famous saturation yoga for normalization:10

Ne(A) JAK Nf(A)

A

↑A ↓A

10cf. normalization by evaluation in the style of Fiore (2002), Altenkirch, Hofmann, and Streicher
(1995), Altenkirch and Kaposi (2016), and Coquand (2019)

20 / 39

Normalization via Tait’s yoga

Tait (1967) introduced the famous saturation yoga for normalization:10

Ne(A) JAK Nf(A)

A

↑A ↓A

“reflection”

10cf. normalization by evaluation in the style of Fiore (2002), Altenkirch, Hofmann, and Streicher
(1995), Altenkirch and Kaposi (2016), and Coquand (2019)

20 / 39

Normalization via Tait’s yoga

Tait (1967) introduced the famous saturation yoga for normalization:10

Ne(A) JAK Nf(A)

A

↑A ↓A

“reification”

10cf. normalization by evaluation in the style of Fiore (2002), Altenkirch, Hofmann, and Streicher
(1995), Altenkirch and Kaposi (2016), and Coquand (2019)

20 / 39

Normalization via Tait’s yoga

Tait (1967) introduced the famous saturation yoga for normalization:10

Ne(A) JAK Nf(A)

A

↑A ↓A

“saturation / Tait’s yoga”

10cf. normalization by evaluation in the style of Fiore (2002), Altenkirch, Hofmann, and Streicher
(1995), Altenkirch and Kaposi (2016), and Coquand (2019)

20 / 39

Yogic injury: unstable neutrals

Neφ(A) JAK Nf(A)

A

↑A ↓A

What if φ = >? We must strengthen the “induction hypothesis”.

21 / 39

Yogic injury: unstable neutrals

Neφ(A) JAK Nf(A)

A

↑A ↓A

What if φ = >?

We must strengthen the “induction hypothesis”.

21 / 39

Yogic injury: unstable neutrals

Ne>(A) JAK Nf(A)

A

↑A ↓A

What if φ = >?

We must strengthen the “induction hypothesis”.

21 / 39

Yogic injury: unstable neutrals

A JAK Nf(A)

A

??? ↓A

What if φ = >?

We must strengthen the “induction hypothesis”.

21 / 39

Yogic injury: unstable neutrals

A JAK Nf(A)

A

??? ↓A

What if φ = >? We must strengthen the “induction hypothesis”.

21 / 39

Stabilization of neutrals

To strengthen the Tait reflection hypothesis, we glue unstable neutrals together with
compatible computability data along their frontiers of instability.

Neφ(A)

A

φ⇒ Aφ⇒ JAK

Neφ(A) oφ JAK

22 / 39

Stabilization of neutrals

To strengthen the Tait reflection hypothesis, we glue unstable neutrals together with
compatible computability data along their frontiers of instability.

Neφ(A)

A

φ⇒ Aφ⇒ JAK

Neφ(A) oφ JAK

“stabilized neutrals”

22 / 39

A spectrum of computability data

Ne⊥(A) JAK

⊥ >
φ

Neφ oφ JAK

Stabilization interpolates between neutrals and computability data.

23 / 39

A spectrum of computability data

Ne⊥(A) JAK

⊥ >
φ

Neφ oφ JAK

Stabilization interpolates between neutrals and computability data.

“conventional

neutrals”

23 / 39

A spectrum of computability data

Ne⊥(A) JAK

⊥ >
φ

Neφ oφ JAK

Stabilization interpolates between neutrals and computability data.

“conventional

neutrals”

“computability
data”

23 / 39

A spectrum of computability data

Ne⊥(A) JAK

⊥ >
φ

Neφ oφ JAK

Stabilization interpolates between neutrals and computability data.

“conventional

neutrals”

“computability
data”

stabilized neutrals

23 / 39

The stabilized Tait yoga

Neφ(A) oφ JAK JAK Nf(A)

ANeφ(A)

φ⇒ JAK

↑φA ↓A

Lemma (Saturation)
Every type of TT is closed under the stabilized Tait yoga.

24 / 39

The stabilized Tait yoga

Neφ(A) oφ JAK JAK Nf(A)

ANeφ(A)

φ⇒ JAK

↑φA ↓A

Lemma (Saturation)
Every type of TT is closed under the stabilized Tait yoga.

24 / 39

The stabilized Tait yoga

Neφ(A) oφ JAK JAK Nf(A)

ANeφ(A)

φ⇒ JAK

↑φA ↓A

Lemma (Saturation)
Every type of TT is closed under the stabilized Tait yoga.

24 / 39

Summary of results

Lemma (Saturation)
Every type of TT is closed under the stabilized Tait yoga.

The above is employed to obtain our main results:

Theorem (Normalization)
There is a computable function assigning to every type Γ ` A and every term Γ ` a : A
of TT a unique normal form.

Corollary (Decidability of equality)
Judgmental equality Γ ` A ≡ B and Γ ` a ≡ b : A in TT is decidable.

Corollary (Injectivity of type constructors)
If Γ ` Π(A,B) ≡ Π(A′,B′) then Γ ` A ≡ A′ and Γ, x : A ` B(x) ≡ B′(x).

25 / 39

A computational conspectus on cubes. . .

The community designed TT with the explicit aim of finding a computational version
of homotopy type theory. We consider the first chapter finally closed:

1. constructive model in cubical sets
by Cohen, Coquand, Huber, and Mörtberg (2017) and Angiuli, Brunerie,
Coquand, Hou (Favonia), Harper, and Licata (2019).

2. computational interpretation of closed n-cubes
by Angiuli, Hou (Favonia), and Harper (2018) and Huber (2018).

3. standard model in homotopy types
by Awodey, Cavallo, Coquand, Riehl, and Sattler (forthcoming).

4. computational interpretation of open terms
by Sterling and Angiuli (2021) and Sterling (2021).

26 / 39

A computational conspectus on cubes. . .

The community designed TT with the explicit aim of finding a computational version
of homotopy type theory. We consider the first chapter finally closed:

1. constructive model in cubical sets
by Cohen, Coquand, Huber, and Mörtberg (2017) and Angiuli, Brunerie,
Coquand, Hou (Favonia), Harper, and Licata (2019).

2. computational interpretation of closed n-cubes
by Angiuli, Hou (Favonia), and Harper (2018) and Huber (2018).

3. standard model in homotopy types
by Awodey, Cavallo, Coquand, Riehl, and Sattler (forthcoming).

4. computational interpretation of open terms
by Sterling and Angiuli (2021) and Sterling (2021).

26 / 39

A computational conspectus on cubes. . .

The community designed TT with the explicit aim of finding a computational version
of homotopy type theory. We consider the first chapter finally closed:

1. constructive model in cubical sets
by Cohen, Coquand, Huber, and Mörtberg (2017) and Angiuli, Brunerie,
Coquand, Hou (Favonia), Harper, and Licata (2019).

2. computational interpretation of closed n-cubes
by Angiuli, Hou (Favonia), and Harper (2018) and Huber (2018).

3. standard model in homotopy types
by Awodey, Cavallo, Coquand, Riehl, and Sattler (forthcoming).

4. computational interpretation of open terms
by Sterling and Angiuli (2021) and Sterling (2021).

26 / 39

A computational conspectus on cubes. . .

The community designed TT with the explicit aim of finding a computational version
of homotopy type theory. We consider the first chapter finally closed:

1. constructive model in cubical sets
by Cohen, Coquand, Huber, and Mörtberg (2017) and Angiuli, Brunerie,
Coquand, Hou (Favonia), Harper, and Licata (2019).

2. computational interpretation of closed n-cubes
by Angiuli, Hou (Favonia), and Harper (2018) and Huber (2018).

3. standard model in homotopy types
by Awodey, Cavallo, Coquand, Riehl, and Sattler (forthcoming).

4. computational interpretation of open terms
by Sterling and Angiuli (2021) and Sterling (2021).

26 / 39

A computational conspectus on cubes. . .

The community designed TT with the explicit aim of finding a computational version
of homotopy type theory. We consider the first chapter finally closed:

1. constructive model in cubical sets
by Cohen, Coquand, Huber, and Mörtberg (2017) and Angiuli, Brunerie,
Coquand, Hou (Favonia), Harper, and Licata (2019).

2. computational interpretation of closed n-cubes
by Angiuli, Hou (Favonia), and Harper (2018) and Huber (2018).

3. standard model in homotopy types
by Awodey, Cavallo, Coquand, Riehl, and Sattler (forthcoming).

4. computational interpretation of open terms
by Sterling and Angiuli (2021) and Sterling (2021).

26 / 39

What’s next for cubical type theory?

We have done more than enough cubical type theory. Time for applications!
I applications to programming and verification

Cavallo and Harper (2020), Angiuli, Cavallo, Mörtberg, and Zeuner (2021), and
Kidney and Wu (2021)

I applications to denotational semantics
Møgelberg and Veltri (2019), Veltri and Vezzosi (2020), Møgelberg and Vezzosi
(2021), and Diezel and Goncharov (2020)

I applications to ordinary mathematics
Forsberg, Xu, and Ghani (2020)

I applications to synthetic homotopy theory
Mörtberg and Pujet (2020), Cavallo (2021), and Brunerie, Ljungström, and
Mörtberg (2021)

27 / 39

The era of synthetic Tait computability

I [POPL’22] A cost-aware logical framework (Niu, Sterling, Grodin, and Harper)
I [LICS’21] Normalization for cubical type theory (Sterling and Angiuli)
I [J.ACM] Logical Relations As Types: Proof-Relevant Parametricity for

Program Modules (Sterling and Harper)
I Normalization for multi-modal type theory (Gratzer)

28 / 39

Let a hundred phase distinctions bloom!

STC also leads to new perspectives on classic PL problems, cf. S. and Harper’s
analysis of the static/dynamic phase distinction and sealing in terms of STC.

logical relations syntax semantics
program modules static dynamic
security / IFC public classified
type refinements computation specification
resource analysis behavior complexity

29 / 39

Let a hundred phase distinctions bloom!

STC also leads to new perspectives on classic PL problems, cf. S. and Harper’s
analysis of the static/dynamic phase distinction and sealing in terms of STC.

logical relations syntax semantics
program modules static dynamic
security / IFC public classified
type refinements computation specification
resource analysis behavior complexity

Sterling, Jonathan and Robert Harper (Oct. 2021). “Logical Relations as Types: Proof-Relevant
Parametricity for Program Modules”. In: Journal of the ACM 68.6. issn: 0004-5411. doi:
10.1145/3474834. arXiv: 2010.08599 [cs.PL].

29 / 39

https://doi.org/10.1145/3474834
https://arxiv.org/abs/2010.08599

Let a hundred phase distinctions bloom!

STC also leads to new perspectives on classic PL problems, cf. S. and Harper’s
analysis of the static/dynamic phase distinction and sealing in terms of STC.

logical relations syntax semantics
program modules static dynamic
security / IFC public classified
type refinements computation specification
resource analysis behavior complexity

Gratzer, Daniel (2021). Normalization for Multimodal Type Theory. arXiv: 2106.01414 [cs.LO].
Sterling, Jonathan and Carlo Angiuli (July 2021). “Normalization for Cubical Type Theory”. In: 2021

36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Los Alamitos, CA,
USA: IEEE Computer Society, pp. 1–15. doi: 10.1109/LICS52264.2021.9470719. arXiv:
2101.11479 [cs.LO].

Sterling, Jonathan and Robert Harper (Oct. 2021). “Logical Relations as Types: Proof-Relevant
Parametricity for Program Modules”. In: Journal of the ACM 68.6. issn: 0004-5411. doi:
10.1145/3474834. arXiv: 2010.08599 [cs.PL].

29 / 39

https://arxiv.org/abs/2106.01414
https://doi.org/10.1109/LICS52264.2021.9470719
https://arxiv.org/abs/2101.11479
https://doi.org/10.1145/3474834
https://arxiv.org/abs/2010.08599

Let a hundred phase distinctions bloom!

STC also leads to new perspectives on classic PL problems, cf. S. and Harper’s
analysis of the static/dynamic phase distinction and sealing in terms of STC.

logical relations syntax semantics
program modules static dynamic
security / IFC public classified
type refinements computation specification
resource analysis behavior complexity

Niu, Yue, Jonathan Sterling, Harrison Grodin, and Robert Harper (2021). A cost-aware logical
framework. Conditionally accepted to POPL ’22. arXiv: 2107.04663 [cs.PL].

29 / 39

https://arxiv.org/abs/2107.04663

Let a hundred phase distinctions bloom!

STC also leads to new perspectives on classic PL problems, cf. S. and Harper’s
analysis of the static/dynamic phase distinction and sealing in terms of STC.

logical relations syntax semantics
program modules static dynamic
security / IFC public classified
type refinements computation specification
resource analysis behavior complexity

Sterling, Jonathan, Stephanie Balzer, and Robert Harper (2021). “Abstract phase distinctions and
noninterference”. Work in progress.

29 / 39

Thanks!

30 / 39

“What about Brunerie’s number?”

I was hoping someone would ask that. (-:

1. It would be great to compute it! More “compute power” is not the answer,
better algorithms and optimizations needed.

2. It is unrelated to the normalization result, because normalization is not
optimized for computation of closed terms. An evaluator that can efficiently
compute Brunerie’s number is not well-adapted for normalization, and vice versa.

3. Brunerie’s number is not a good benchmark, exactly analogous to “one plus
the Collatz function applied to the one hundred trillionth Fibonacci number” —
both probably compute to 2, but no surprise that this takes a lot of time & space.

4. Whoever computes it will get an feature article in Quanta, but the result will
not change the landscape for computational applications of cubical type theory.

31 / 39

References I
Tait, W. W. (1967). “Intensional Interpretations of Functionals of Finite Type I”. In: The Journal of

Symbolic Logic 32.2, pp. 198–212. issn: 00224812. url: http://www.jstor.org/stable/2271658.
Artin, Michael, Alexander Grothendieck, and Jean-Louis Verdier (1972). Théorie des topos et

cohomologie étale des schémas. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964
(SGA 4), Dirigé par M. Artin, A. Grothendieck, et J.-L. Verdier. Avec la collaboration de N.
Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 269, 270, 305. Berlin:
Springer-Verlag.

Wraith, Gavin (1974). “Artin glueing”. In: Journal of Pure and Applied Algebra 4.3, pp. 345–348. issn:
0022-4049. doi: 10.1016/0022-4049(74)90014-0.

Johnstone, P. T (1977). “Rings, fields, and spectra”. In: Journal of Algebra 49.1, pp. 238–260. issn:
0021-8693. doi: 10.1016/0021-8693(77)90284-8.

Mac Lane, Saunders and Ieke Moerdijk (1992). Sheaves in geometry and logic: a first introduction to
topos theory. Universitext. New York: Springer. isbn: 0-387-97710-4.

Jung, Achim and Jerzy Tiuryn (1993). “A new characterization of lambda definability”. In: Typed
Lambda Calculi and Applications. Ed. by Marc Bezem and Jan Friso Groote. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 245–257. isbn: 978-3-540-47586-6.

Altenkirch, Thorsten, Martin Hofmann, and Thomas Streicher (1995). “Categorical reconstruction of a
reduction free normalization proof”. In: Category Theory and Computer Science. Ed. by
David Pitt, David E. Rydeheard, and Peter Johnstone. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 182–199. isbn: 978-3-540-44661-3.

32 / 39

http://www.jstor.org/stable/2271658
https://doi.org/10.1016/0022-4049(74)90014-0
https://doi.org/10.1016/0021-8693(77)90284-8

References II
Fiore, Marcelo (2002). “Semantic Analysis of Normalisation by Evaluation for Typed Lambda

Calculus”. In: Proceedings of the 4th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming. PPDP ’02. Pittsburgh, PA, USA: Association for Computing
Machinery, pp. 26–37. isbn: 1-58113-528-9. doi: 10.1145/571157.571161.

Bezem, Marc, Thierry Coquand, and Simon Huber (2014). “A Model of Type Theory in Cubical Sets”.
In: 19th International Conference on Types for Proofs and Programs (TYPES 2013). Ed. by
Ralph Matthes and Aleksy Schubert. Vol. 26. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 107–128.
isbn: 978-3-939897-72-9. doi: 10.4230/LIPIcs.TYPES.2013.107. url:
http://drops.dagstuhl.de/opus/volltexte/2014/4628.

Altenkirch, Thorsten and Ambrus Kaposi (2016). “Normalisation by Evaluation for Dependent Types”.
In: 1st International Conference on Formal Structures for Computation and Deduction (FSCD
2016). Ed. by Delia Kesner and Brigitte Pientka. Vol. 52. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
6:1–6:16. isbn: 978-3-95977-010-1. doi: 10.4230/LIPIcs.FSCD.2016.6. url:
http://drops.dagstuhl.de/opus/volltexte/2016/5972.

33 / 39

https://doi.org/10.1145/571157.571161
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
http://drops.dagstuhl.de/opus/volltexte/2014/4628
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
http://drops.dagstuhl.de/opus/volltexte/2016/5972

References III
Orton, Ian and Andrew M. Pitts (2016). “Axioms for Modelling Cubical Type Theory in a Topos”. In:

25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Ed. by Jean-Marc Talbot
and Laurent Regnier. Vol. 62. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 24:1–24:19. isbn:
978-3-95977-022-4. doi: 10.4230/LIPIcs.CSL.2016.24.

Angiuli, Carlo, Kuen-Bang Hou (Favonia), and Robert Harper (2017). Computational Higher Type
Theory III: Univalent Universes and Exact Equality. arXiv: 1712.01800 [cs.LO]. url:
https://arxiv.org/abs/1712.01800.

Cohen, Cyril, Thierry Coquand, Simon Huber, and Anders Mörtberg (Nov. 2017). “Cubical Type
Theory: a constructive interpretation of the univalence axiom”. In: IfCoLog Journal of Logics and
their Applications 4.10, pp. 3127–3169. url:
http://www.collegepublications.co.uk/journals/ifcolog/?00019.

Angiuli, Carlo, Kuen-Bang Hou (Favonia), and Robert Harper (2018). “Cartesian Cubical
Computational Type Theory: Constructive Reasoning with Paths and Equalities”. In: 27th EACSL
Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 6:1–6:17. isbn: 978-3-95977-088-0. doi:
10.4230/LIPIcs.CSL.2018.6. url: http://drops.dagstuhl.de/opus/volltexte/2018/9673.

34 / 39

https://doi.org/10.4230/LIPIcs.CSL.2016.24
https://arxiv.org/abs/1712.01800
https://arxiv.org/abs/1712.01800
http://www.collegepublications.co.uk/journals/ifcolog/?00019
https://doi.org/10.4230/LIPIcs.CSL.2018.6
http://drops.dagstuhl.de/opus/volltexte/2018/9673

References IV
Awodey, Steve (2018). “A cubical model of homotopy type theory”. In: Annals of Pure and Applied

Logic 169.12. Logic Colloquium 2015, pp. 1270–1294. issn: 0168-0072. doi:
10.1016/j.apal.2018.08.002.

Coquand, Thierry (Oct. 2018). Canonicity and normalisation for Dependent Type Theory. arXiv:
1810.09367 [cs.PL]. url: https://arxiv.org/abs/1810.09367.

Huber, Simon (June 13, 2018). “Canonicity for Cubical Type Theory”. In: Journal of Automated
Reasoning. issn: 1573-0670. doi: 10.1007/s10817-018-9469-1.

Licata, Daniel R., Ian Orton, Andrew M. Pitts, and Bas Spitters (2018). “Internal Universes in Models
of Homotopy Type Theory”. In: 3rd International Conference on Formal Structures for
Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, 22:1–22:17. doi:
10.4230/LIPIcs.FSCD.2018.22.

Angiuli, Carlo, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou (Favonia), Robert Harper, and
Daniel R. Licata (Feb. 2019). Syntax and Models of Cartesian Cubical Type Theory. Preprint. url:
https://github.com/dlicata335/cart-cube.

Coquand, Thierry (2019). “Canonicity and normalization for dependent type theory”. In: Theoretical
Computer Science 777. In memory of Maurice Nivat, a founding father of Theoretical Computer
Science - Part I, pp. 184–191. issn: 0304-3975. doi: 10.1016/j.tcs.2019.01.015. arXiv:
1810.09367 [cs.PL].

35 / 39

https://doi.org/10.1016/j.apal.2018.08.002
https://arxiv.org/abs/1810.09367
https://arxiv.org/abs/1810.09367
https://doi.org/10.1007/s10817-018-9469-1
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://github.com/dlicata335/cart-cube
https://doi.org/10.1016/j.tcs.2019.01.015
https://arxiv.org/abs/1810.09367

References V
Møgelberg, Rasmus Ejlers and Niccolò Veltri (Jan. 2019). “Bisimulation as Path Type for Guarded

Recursive Types”. In: Proceedings of the ACM on Programming Languages 3.POPL. doi:
10.1145/3290317.

Sterling, Jonathan, Carlo Angiuli, and Daniel Gratzer (2019). “Cubical Syntax for Reflection-Free
Extensional Equality”. In: 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019). Ed. by Herman Geuvers. Vol. 131. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
31:1–31:25. isbn: 978-3-95977-107-8. doi: 10.4230/LIPIcs.FSCD.2019.31. arXiv: 1904.08562
[cs.LO]. url: http://drops.dagstuhl.de/opus/volltexte/2019/10538.

Cavallo, Evan and Robert Harper (2020). “Internal Parametricity for Cubical Type Theory”. In: 28th
EACSL Annual Conference on Computer Science Logic (CSL 2020). Ed. by Maribel Fernández and
Anca Muscholl. Vol. 152. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 13:1–13:17. isbn:
978-3-95977-132-0. doi: 10.4230/LIPIcs.CSL.2020.13. url:
https://drops.dagstuhl.de/opus/volltexte/2020/11656.

36 / 39

https://doi.org/10.1145/3290317
https://doi.org/10.4230/LIPIcs.FSCD.2019.31
https://arxiv.org/abs/1904.08562
https://arxiv.org/abs/1904.08562
http://drops.dagstuhl.de/opus/volltexte/2019/10538
https://doi.org/10.4230/LIPIcs.CSL.2020.13
https://drops.dagstuhl.de/opus/volltexte/2020/11656

References VI
Diezel, Tim Lukas and Sergey Goncharov (2020). “Towards Constructive Hybrid Semantics”. In: 5th

International Conference on Formal Structures for Computation and Deduction (FSCD 2020).
Ed. by Zena M. Ariola. Vol. 167. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 24:1–24:19. isbn:
978-3-95977-155-9. doi: 10.4230/LIPIcs.FSCD.2020.24. url:
https://drops.dagstuhl.de/opus/volltexte/2020/12346.

Forsberg, Fredrik Nordvall, Chuangjie Xu, and Neil Ghani (2020). “Three Equivalent Ordinal Notation
Systems in Cubical Agda”. In: Proceedings of the 9th ACM SIGPLAN International Conference on
Certified Programs and Proofs. New Orleans, LA, USA: Association for Computing Machinery,
pp. 172–185. isbn: 978-1-4503-7097-4. doi: 10.1145/3372885.3373835.

Mörtberg, Anders and Löıc Pujet (2020). “Cubical Synthetic Homotopy Theory”. In: Proceedings of
the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs. New Orleans,
LA, USA: Association for Computing Machinery, pp. 158–171. isbn: 978-1-4503-7097-4. doi:
10.1145/3372885.3373825.

Rijke, Egbert, Michael Shulman, and Bas Spitters (Jan. 2020). “Modalities in homotopy type theory”.
In: Logical Methods in Computer Science Volume 16, Issue 1. doi: 10.23638/LMCS-16(1:2)2020.
arXiv: 1706.07526 [math.CT]. url: https://lmcs.episciences.org/6015.

37 / 39

https://doi.org/10.4230/LIPIcs.FSCD.2020.24
https://drops.dagstuhl.de/opus/volltexte/2020/12346
https://doi.org/10.1145/3372885.3373835
https://doi.org/10.1145/3372885.3373825
https://doi.org/10.23638/LMCS-16(1:2)2020
https://arxiv.org/abs/1706.07526
https://lmcs.episciences.org/6015

References VII
Veltri, Niccolò and Andrea Vezzosi (2020). “Formalizing π-Calculus in Guarded Cubical Agda”. In:

Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and
Proofs. New Orleans, LA, USA: Association for Computing Machinery, pp. 270–283. isbn:
978-1-4503-7097-4. doi: 10.1145/3372885.3373814.

Angiuli, Carlo, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou (Favonia), Robert Harper, and
Daniel R. Licata (Mar. 2021). Syntax and Models of Cartesian Cubical Type Theory. Preprint.
url: https://www.cs.cmu.edu/∼cangiuli/papers/abcfhl.pdf.

Angiuli, Carlo, Evan Cavallo, Anders Mörtberg, and Max Zeuner (Jan. 2021). “Internalizing
Representation Independence with Univalence”. In: Proceedings of the ACM on Programming
Languages 5.POPL, pp. 1–30. doi: 10.1145/3434293.

Brunerie, Guillaume, Axel Ljungström, and Anders Mörtberg (2021). “Synthetic Cohomology Theory in
Cubical Agda”. Preprint.

Cavallo, Evan (2021). “Higher Inductive Types and Internal Parametricity for Cubical Type Theory”.
PhD thesis. Carnegie Mellon University.

Gratzer, Daniel (2021). Normalization for Multimodal Type Theory. arXiv: 2106.01414 [cs.LO].
Kidney, Donnacha Oiśın and Nicolas Wu (Aug. 2021). “Algebras for Weighted Search”. In: Proceedings

of the ACM on Programming Languages 5.ICFP. doi: 10.1145/3473577.
Møgelberg, Rasmus Ejlers and Andrea Vezzosi (2021). “Two Guarded Recursive Powerdomains for

Applicative Simulation”. In: MFPS37: 37th Conference on Mathematical Foundations of
Programming Semantics.

38 / 39

https://doi.org/10.1145/3372885.3373814
https://www.cs.cmu.edu/~cangiuli/papers/abcfhl.pdf
https://doi.org/10.1145/3434293
https://arxiv.org/abs/2106.01414
https://doi.org/10.1145/3473577

References VIII
Niu, Yue, Jonathan Sterling, Harrison Grodin, and Robert Harper (2021). A cost-aware logical

framework. Conditionally accepted to POPL ’22. arXiv: 2107.04663 [cs.PL].
Sterling, Jonathan (2021). “First Steps in Synthetic Tait Computability: The Objective Metatheory of

Cubical Type Theory”. Forthcoming. PhD thesis. Carnegie Mellon University.
Sterling, Jonathan and Carlo Angiuli (July 2021). “Normalization for Cubical Type Theory”. In: 2021

36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Los Alamitos, CA,
USA: IEEE Computer Society, pp. 1–15. doi: 10.1109/LICS52264.2021.9470719. arXiv:
2101.11479 [cs.LO].

Sterling, Jonathan and Robert Harper (Oct. 2021). “Logical Relations as Types: Proof-Relevant
Parametricity for Program Modules”. In: Journal of the ACM 68.6. issn: 0004-5411. doi:
10.1145/3474834. arXiv: 2010.08599 [cs.PL].

39 / 39

https://arxiv.org/abs/2107.04663
https://doi.org/10.1109/LICS52264.2021.9470719
https://arxiv.org/abs/2101.11479
https://doi.org/10.1145/3474834
https://arxiv.org/abs/2010.08599

