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It’s been a year and a half since I last spoke to the MURI team...

Last time I
optimistically promised to do the following:

1. resolve Coquand’s conjecture?
normalization and decidability of judgmental equality for cubical type theory

2. develop new account of ML modules?
explore the connection between the phase splitting in PL and Artin gluing

Happy to report that we managed to do both.
Sterling, Jonathan and Carlo Angiuli (July 2021). “Normalization for Cubical Type Theory”. In: 2021

36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Los Alamitos, CA,
USA: IEEE Computer Society, pp. 1–15. doi: 10.1109/LICS52264.2021.9470719. arXiv:
2101.11479 [cs.LO].

Sterling, Jonathan and Robert Harper (Oct. 2021). “Logical Relations as Types: Proof-Relevant
Parametricity for Program Modules”. In: Journal of the ACM 68.6. issn: 0004-5411. doi:
10.1145/3474834. arXiv: 2010.08599 [cs.PL].
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The cubical hypothesis

HoTT consolidates many semantical advances that make type theory more broadly
applicable: univalence, HITs, good quotients, function extensionality, function
comprehension!

But HoTT’s equational theory is too weak to compute with. Cubical type theory1
designed to combine good HoTT semantics with good computational properties.

Success? We managed to implement it in redtt [S., Favonia] and our Swedish
colleagues built Cubical Agda. But implementations hinge on Coquand’s conjecture:

Conjecture (Cohen, Coquand, Huber, and Mörtberg, 2017)
Cubical type theory enjoys normalization and decidable judgmental equality.

1Bezem, Coquand, and Huber (2014), Angiuli, Hou (Favonia), and Harper (2017), Cohen, Coquand,
Huber, and Mörtberg (2017), Awodey (2018), and Angiuli, Brunerie, Coquand, Hou (Favonia), Harper,
and Licata (2021)
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We have now positively resolved Coquand’s normalization and decidability
conjecture for cubical type theory.

The main ingredient is a new technique called synthetic Tait computability (STC)
abstracting Artin gluing and logical relations.

3 / 39



We have now positively resolved Coquand’s normalization and decidability
conjecture for cubical type theory.

The main ingredient is a new technique called synthetic Tait computability (STC)
abstracting Artin gluing and logical relations.

3 / 39



Computation in TT: prior art

Prior state of the art (Huber, 2018; Angiuli, Hou (Favonia), and Harper, 2018):

Theorem (Cubical canonicity)
If ~ı : In ` M(~ı) : bool is a closed n-cube of booleans, then either
~ı : In ` M(~ı) ≡ tt : bool or ~ı : In ` M(~ı) ≡ ff : bool.

Hence TT is programming language.

Cubical canonicity is only about computation of closed n-cubes. But
implementation (type checking, elaboration) requires computation in arbitrary
contexts Γ, i.e. normalization.
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Main results

I have proved the following suite of results for TT with a countable cumulative
hierarchy of universes:2

Theorem (Normalization)
There is a computable function assigning to every type Γ ` A and every term Γ ` a : A
of TT a unique normal form.

Corollary (Decidability of equality)
Judgmental equality Γ ` A ≡ B and Γ ` a ≡ b : A in TT is decidable.

Corollary (Injectivity of type constructors)
If Γ ` Π(A,B) ≡ Π(A′,B′) then Γ ` A ≡ A′ and Γ, x : A ` B(x) ≡ B′(x).

2The preliminary result for TT without universes is j.w.w. Angiuli published in LICS’21 (Sterling and
Angiuli, 2021). The full result is in my dissertation (Sterling, 2021).
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Proving metatheorems using Tait’s method

In 1967, Tait introduced his method of computability;3 Tait computability has
remained our only scalable tool for proving metatheorems for logics and type theory
(canonicity, normalization, parametricity, etc.).4

Idea: an “interpretation” that equips each type A with an predicate JAK on elements
of A; then show that all terms preserve the predicates.

1. First choose the predicate at base type to make soundness of the interpretation
imply the desired metatheorem.

2. Then “draw the rest of the owl”.

3a.k.a. logical relations/predicates
4Gentzen’s cut elimination an elegant alternative in some cases, but rarely scales beyond toy examples.
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Operational Tait computability

First define operational semantics 7→∗ on raw closed terms.

Example (Canonicity)
To prove canonicity, we choose the following predicates:

JboolK(b) := (b 7→∗ tt ∨ b 7→∗ ff)

JA→ BK(f ) := (∀x : A.JAK(x)→ JBK(f (x)))

Q1: given a type A, what is the domain of JAK? closed terms, open terms, typed, ??
Q2: what properties must JAK satisfy? closure under subst., ren., head expansion, ??
Q3: does our proof actually depend on the chosen transition relation 7→∗?
Q4: why are the predicates attached to connectives (→,×, . . .) the way they are?

(None of the above have satisfactory answers in operational Tait computability.)
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The outer limits of operational Tait computability

Specifying and verifying the domain and closure conditions of computability predicates
for cubical canonicity proved nearly intractable, pace Huber (2018) and Angiuli, Hou
(Favonia), and Harper (2018).

Motivated S., Angiuli, and Gratzer to pursue an algebraic/gluing-based version of Tait
computability for TT5 à la Coquand (2018), as suggested by Awodey.

Idea: work only with quotiented typed terms, make computability predicates
proof-relevant. Outcome: all difficulties disappeared for cubical canonicity,
normalization still required fundamentally new ideas.

Synthetic Tait computability = type theoretic abstraction of the algebraic gluing
argument à la Orton and Pitts (2016).

5Sterling, Angiuli, and Gratzer (2019)
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Introducing synthetic Tait computability

What is synthetic about synthetic Tait computability?

Analytic methods explain domain objects in terms of their encoding as something
totally different. Synthetic methods explain domain objects in terms of their relation
to each other.

analytic synthetic
geometry the Cartesian plane, Rn Euclid’s postulates
metatheory logical relations, Artin gluing STC

STC abstracts logical relations by isolating the relationship between syntax and
semantics as a pair of modalities.

Expressive enough to recover and simplify existing LR arguments. More importantly,
STC gave me new geometrical intuitions that I used to solve cubical normalization.
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STC gave me new geometrical intuitions that I used to solve cubical normalization.
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Mixing syntax and semantics

What is really going on in Tait computability? We are immersing syntax in a more
powerful language (the language of computability predicates) that can express the
semantic invariants we want.

(Smoother to develop and use if we generalize to computability structures, i.e.
proof-relevant computability predicates.7)

e.g. the computability structure of the booleans:

JboolK :=
(

x : bool
)
× x = tt + x = ff

7cf. logical relations for universes and strong sums
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Piecing together syntax and semantics
Computability structures built from syntax and semantics .

These can be mixed
and matched, but the satisfy some laws:

I Both − and − are lex idempotent monads.

I Complementarity: semantic things are syntactically trivial, i.e. A ∼= unit but
not the other way around.

I Fracture: any computability structure A can be reconstructed from A , A ,

and A .

A

A

A

A
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The language of synthetic Tait computability

Definition
STC = type theory + modalities − / − that behave as above.

Equivalently, extend type theory by a generic proposition ¶ : Prop and define
A := A¶ and A := A ∪A×¶ ¶.

Internal language of topoi formed by Artin gluing (Artin, Grothendieck, and Verdier,
1972; Wraith, 1974; Rijke, Shulman, and Spitters, 2020).
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A recipe for using STC

Analogous to how people use SDG, etc. We adapt Kock’s recipe:
1. Prove the decisive parts of your theorem synthetically in STC.
2. Choose a topos model of STC (i.e. an Artin gluing).
3. Extract your external result from the STC model.

An important part is to choose the right model of STC.
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STC models as mapping cylinders
Most useful STC models arise as the closed mapping cylinder (Johnstone, 1977) of a
morphism of topoi that we think of as a “figure shape” α : A T̂ :9

A

A× S

(open immersion)

T̂

M•α

α

(open immersion)

A

(closed immersion)

Above T̂ is the “syntactic topos”. What do we mean by “figure shape”, and how do
we choose it?

9Equivalently, this is the Artin gluing {SetA} ↓ α∗ of the inverse image functor α∗ : SetT̂ SetA.
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Choosing a figure shape, abstractly
Let’s say we are proving something about the sort Tp : T of types. Usually we cannot
state or prove our theorem for all figures X Tp but only for certain figures, e.g. only
point-shaped figures (canonicity) or context-shaped figures (normalization).

A figure shape α : A T̂ is chosen to restrict syntactic objects like Tp to their
“functors of A-shaped points” where A embodies the permitted figures.

α∗y(Tp)

A

y(Tp)

T̂
α

[This is what was going on in the 1990s literature, “Kripke relations of varying arity” (Jung and
Tiuryn, 1993; Fiore, 2002).]
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Choosing a figure shape, concretely

Ψ  M : A ⇓ V

canonicity: A ∈ {nat}; normalization: A ∈ {Ψ ` type}

canonicity: V ∈ N; normalization: V ∈
{

Ψ βη
nf A

}
canonicity: Γ ∈ {·}; cubical canonicity: Γ ∈ {In | n ∈ N}; normalization: Γ ∈ {` ctx}

element

observationcontext
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Stability (or lack thereof) of observation

x : nat  x : nat ⇓ var(x)

In plain type theory, neutral observations (elimination forms blocked on variables) are
closed under renaming, but not full substitution.

Therefore normalization takes place over the category R of contexts and structural
renamings (weakening, swapping, contraction).
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What goes wrong for TT?

Unfortunately, just removing the substitutions for which neutral observations are
unstable is not practicable for TT. The problem lies with the interval:

p : fib =nat→nat fib, i : I  (p @ i) 9 : nat ⇓ app(pathapp(var(p), i), su9(ze))

We shouldn’t remove [0/i ], [1/i ] from the category of contexts and renamings because
we need I to restrict to something representable in Pr(R), c.f. tininess
criterion (Licata, Orton, Pitts, and Spitters, 2018).
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The power of dialectical thinking: geometrical negation
Thesis: neutrals need to have a cubical substitution action (tininess of I).

Antithesis: positive neutrality is not a cubical notion: under face maps [0/i ], [1/i ] a
neutral observation can cease ‘being neutral’ and needs to ‘compute’.

Synthesis: the conditions away from which a term is neutral are cubical. Write ∂E for
this frontier of instability:

∂(var(x)) = ⊥
∂(app(E ,M)) = ∂E

∂(fst(E )) = ∂E
∂(pathapp(E , r)) = ∂E ∨ (r = 0) ∨ (r = 1)

Therefore we define an inductive family Neφ(A) with Neφ(A) ∼= A comprised of
neutrals e with ∂e = φ. Traditional neutrals Ne⊥(A); to model destabilization,
Ne>(A) ∼= A .
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Normalization via Tait’s yoga

Tait (1967) introduced the famous saturation yoga for normalization:

Ne(A) ⊆ JAK ⊆ Nf(A)
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Normalization via Tait’s yoga

Tait (1967) introduced the famous saturation yoga for normalization:10

Ne(A) JAK Nf(A)

A
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Yogic injury: unstable neutrals

Neφ(A) JAK Nf(A)

A

↑A ↓A

What if φ = >? We must strengthen the “induction hypothesis”.
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Stabilization of neutrals

To strengthen the Tait reflection hypothesis, we glue unstable neutrals together with
compatible computability data along their frontiers of instability.

Neφ(A)

A

φ⇒ Aφ⇒ JAK

Neφ(A) oφ JAK
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A spectrum of computability data

Ne⊥(A) JAK

⊥ >
φ

Neφ oφ JAK

Stabilization interpolates between neutrals and computability data.
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A spectrum of computability data

Ne⊥(A) JAK

⊥ >
φ

Neφ oφ JAK

Stabilization interpolates between neutrals and computability data.

“conventional

neutrals”

“computability
data”

stabilized neutrals

23 / 39



The stabilized Tait yoga

Neφ(A) oφ JAK JAK Nf(A)

ANeφ(A)

φ⇒ JAK

↑φA ↓A

Lemma (Saturation)
Every type of TT is closed under the stabilized Tait yoga.
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Summary of results

Lemma (Saturation)
Every type of TT is closed under the stabilized Tait yoga.

The above is employed to obtain our main results:

Theorem (Normalization)
There is a computable function assigning to every type Γ ` A and every term Γ ` a : A
of TT a unique normal form.

Corollary (Decidability of equality)
Judgmental equality Γ ` A ≡ B and Γ ` a ≡ b : A in TT is decidable.

Corollary (Injectivity of type constructors)
If Γ ` Π(A,B) ≡ Π(A′,B′) then Γ ` A ≡ A′ and Γ, x : A ` B(x) ≡ B′(x).
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A computational conspectus on cubes. . .

The community designed TT with the explicit aim of finding a computational version
of homotopy type theory. We consider the first chapter finally closed:

1. constructive model in cubical sets
by Cohen, Coquand, Huber, and Mörtberg (2017) and Angiuli, Brunerie,
Coquand, Hou (Favonia), Harper, and Licata (2019).

2. computational interpretation of closed n-cubes
by Angiuli, Hou (Favonia), and Harper (2018) and Huber (2018).

3. standard model in homotopy types
by Awodey, Cavallo, Coquand, Riehl, and Sattler (forthcoming).

4. computational interpretation of open terms
by Sterling and Angiuli (2021) and Sterling (2021).
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What’s next for cubical type theory?

We have done more than enough cubical type theory. Time for applications!
I applications to programming and verification

Cavallo and Harper (2020), Angiuli, Cavallo, Mörtberg, and Zeuner (2021), and
Kidney and Wu (2021)

I applications to denotational semantics
Møgelberg and Veltri (2019), Veltri and Vezzosi (2020), Møgelberg and Vezzosi
(2021), and Diezel and Goncharov (2020)

I applications to ordinary mathematics
Forsberg, Xu, and Ghani (2020)

I applications to synthetic homotopy theory
Mörtberg and Pujet (2020), Cavallo (2021), and Brunerie, Ljungström, and
Mörtberg (2021)
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The era of synthetic Tait computability

I [POPL’22] A cost-aware logical framework (Niu, Sterling, Grodin, and Harper)
I [LICS’21] Normalization for cubical type theory (Sterling and Angiuli)
I [J.ACM] Logical Relations As Types: Proof-Relevant Parametricity for

Program Modules (Sterling and Harper)
I Normalization for multi-modal type theory (Gratzer)
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Let a hundred phase distinctions bloom!

STC also leads to new perspectives on classic PL problems, cf. S. and Harper’s
analysis of the static/dynamic phase distinction and sealing in terms of STC.

logical relations syntax semantics
program modules static dynamic
security / IFC public classified
type refinements computation specification
resource analysis behavior complexity
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Thanks!
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“What about Brunerie’s number?”

I was hoping someone would ask that. (-:

1. It would be great to compute it! More “compute power” is not the answer,
better algorithms and optimizations needed.

2. It is unrelated to the normalization result, because normalization is not
optimized for computation of closed terms. An evaluator that can efficiently
compute Brunerie’s number is not well-adapted for normalization, and vice versa.

3. Brunerie’s number is not a good benchmark, exactly analogous to “one plus
the Collatz function applied to the one hundred trillionth Fibonacci number” —
both probably compute to 2, but no surprise that this takes a lot of time & space.

4. Whoever computes it will get an feature article in Quanta, but the result will
not change the landscape for computational applications of cubical type theory.
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