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[Announcements / important dates]

▶ Thesis defense (First Steps in Synthetic Tait Computability) scheduled for
September 13, 1:30PM. Please attend (remotely)!

▶ Starting postdoc at Aarhus University with Lars Birkedal in September.
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Software engineering is about division of labor
between users and machines
between clients and servers
between different programmers
between different modules.

Tension lies between
abstraction (division of labor)
and composition (harmony of labor).

PL theory = advancing linguistic solutions to the contradiction between abstraction
and composition (Reynolds, 1983).

This talk: separate compilation vs. inlining
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Separate compilation vs. inlining

Separate compilation = compiling each program unit as a function of the other units it
depends on.

Pros (abstraction):
1. Compilation can proceed in parallel
2. Enforces modularity of program units

Cons (composition):

1. Prevents inlining of definitions
2. Prevents compiler exploitation of data representations

Alternative: whole-program analysis à la Mlton. Works great, but very slow and
memory-intensive. We want to put the choice in the programmer’s hands.
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Background: program units and their interfaces
Programs are divided into compilation units; units are classified by an interface that
represents their imports and exports.

Example
A fragment of the (idealized) interface to OS.FileSys in SML’s Basis Library:

import
option : type → type
some : (α : type) → α → option(α),
none : (α : type) → option(α),
case : (α, β : type) → (α → β) → β → option(α) → β,
. . .
export
dirstream : type,
opendir : string → dirstream,
readdir : dirstream → option(string),
. . .
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Type synonyms and singleton kinds

Type synonyms = revealing the representation of a type to the programmer; e.g.
type dirpath = string.

Stone (2000) introduces singleton kinds {type ↪→ τ} to support revelation of
representation details. An element of {type ↪→ τ} is exactly a type σ : type such that
σ ≡ τ !

export
dirpath : {type ↪→ string},
dirstream : type,
opendir : dirpath → dirstream,
. . .

Inlining problem is similar, but we want to reveal representation details to the
compiler but not the programmer. Need for controlled revelation.
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Example: abstract types and the need for inlining
The OS.FileSys unit is generic in any implementation of the ‘option’ data type and its
pattern matching principle: algebraic data types are abstract data types (Harper,
2013).

import
option : type → type,
some : (α : type) → α → option(α),
none : (α : type) → option(α),
case : (α, β : type) → (α → β) → β → option(α) → β,
. . .
export
dirstream : type,
opendir : string → dirstream,
readdir : dirstream → option(string),
. . .

Good for modularity, but terrible for pattern compilation. Inlining the actual “fast
path” representation is necessary!
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Exporting definitions is not enough!

What about inlining of values? Both Stone (2000) and Leroy (2000) propose to address
the inlining problem for both types and runtime values by adding singleton types:

export a : {type ↪→ int}, x : {a ↪→ 5}

But: singletons reveal representation details to both programmer and compiler,
defeating the purpose of introducing abstraction.
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Why do we (programmers) use abstraction?

To hide distracting facts from ourselves (and our future selves).

▶ Protection from representation coincidences: an integer that encodes the name of
an instruction is not to be confused with one that encodes the length of a packet.

▶ Exploitation of representation invariants:

▶ A batched queue behaves like an ordinary queue if you only use the queue operations.
▶ A polymorphic function list(α) → list(α) can only permute, drop, and duplicate

elements from its input.
▶ Any polymorphic function α → int is constant.

Abstraction simplifies both programming and verification tasks.
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Why do compilers break abstraction?

Programmers introduce abstraction to protect themselves from representation details.
But compilers need these details to generate efficient code! Solutions so far:

1. Singletons à la Stone (2000), Leroy (2000): breaks the programmer’s
abstractions but allows inlining.

2. Break all abstractions during compilation after typechecking à la
Mlton (Weeks, 2006): very slow, can be used to fry eggs on your laptop. But
preserves programmer-abstractions during typechecking-time!

We propose a unification of the two ideas, negotiated by a phase distinction.
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Reynolds’ Dictum and the Phase Distinction

What are types for? Reynolds tells us:

“Type structure is a syntactic discipline for enforcing levels of abstrac-
tion.” (Reynolds, 1983)

Experience tells us: programmers and compilers work at different levels of
abstraction. But our type systems do not cleanly account for this interaction.

Our claim: the classic ML Family phase distinction provides crucial insight to
implement Reynolds’ Dictum.
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Revisiting the static/dynamic phase distinction

Classic phase distinction = compiletime/static vs. runtime/dynamic.

Historically a pivotal notion in ML languages (Harper, Mitchell, and Moggi, 1990),
re-investigated by Sterling and Harper (2021). But do we still need it?

1. Runtime values increasingly have static identity (e.g. SML ’90, Haskell, Scala).
2. No obstruction to typechecking & compiling effectful+partial code in

“full-spectrum” dependent type theory (see Lean 4, Idris 2).

Nonetheless, other useful phase distinctions abound:

1. syntax vs. semantics (Gratzer, 2021; Sterling and Angiuli, 2021; Sterling and
Harper, 2021)

2. behavior vs. cost/complexity (Niu et al., 2021)
3. computation vs. specification (Melliès and Zeilberger, 2015)
4. (this talk) compilation vs. programming
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The phase distinction between compilation and programming

The inlining problem: singletons break abstraction now, which we want to postpone
to compiletime!

Let C be a token representing the compiletime phase.

▶ Introduce partial singletons {τ | C ↪→ e}: the largest subtype of τ that becomes
equivalent to the singleton {τ ↪→ e} at compiletime.

▶ Phases are a partial order O = {C ≤ ⊤} where ⊤ represents “now”. The (total)
partial singleton {τ | ⊤ ↪→ e} is the singleton {τ ↪→ e}.

▶ Judgments Γ ⊢ϕ e : τ and Γ ⊢ϕ e ≡ e′ : τ are contravariantly indexed in phases
ϕ ∈ O.
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Example: unboxed representations without losing abstraction

Programming-time abstractions are respected.

Consider a unit that imports abstract
types representing the DNS protocol:

import
hid : {type | C ↪→ unsigned short},
qr, opcode, aa, . . . : {type | C ↪→ unsigned char},
header : {type ↪→ hid× qr × opcode× aa× . . .},
export
parseheader : bits → option(header)× bits

Theorem. The parser does not observably depend on the reprs of opcode, etc.

Compilation proceeds by reindexing along the phase transition C ≤O ⊤; we have:

⊢C header ≡ unsigned short× unsigned char × unsigned char × . . .

⇒ unboxed repr possible without breaking programmer-abstractions!
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A metalanguage for multi-phase modularity

There are many possible phase distinctions, all with identical formal properties. Future
ML core languages should therefore support an arbitrary phase lattice O.

Four magic weapons:

▶ Partial singletons {τ | ϕ ↪→ e} for breaking abstraction in phase ϕ.
▶ Phase modality ⟨ϕ⟩τ for code that can only be called from phase ϕ.
▶ Sealing modality [ϕ \ τ ] for erasing code from phase ϕ.
▶ Fracture: any type τ is a subtype of (⟨ϕ⟩τ)× [ϕ \ τ ].

Fully reconstructs static/dynamic phase distinction (see LRAT), but also refinement
types (e.g. Liquid Haskell), parametricity/logical relations, security typing / IFC.
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Sealing: instrumentation sans interference

Poor man’s profiling: add counter fields to some datatypes and keep track of how
many times you call functions.

Problem: your profiling code may interfere with the program behavior
⇒ difficult to track bugs.

Solution: seal the counter variables under the sealing (lax) modality [C \ τ ] ; this
causes them to be erased by the default compiler. Noninterference / modal phase
splitting automatically ensures that input-output behavior of compiled programs
cannot depend on the values of counters.

16 / 21



Sealing: instrumentation sans interference

Poor man’s profiling: add counter fields to some datatypes and keep track of how
many times you call functions.

Problem: your profiling code may interfere with the program behavior
⇒ difficult to track bugs.

Solution: seal the counter variables under the sealing (lax) modality [C \ τ ] ; this
causes them to be erased by the default compiler. Noninterference / modal phase
splitting automatically ensures that input-output behavior of compiled programs
cannot depend on the values of counters.

16 / 21



Sealing: instrumentation sans interference

Poor man’s profiling: add counter fields to some datatypes and keep track of how
many times you call functions.

Problem: your profiling code may interfere with the program behavior
⇒ difficult to track bugs.

Solution: seal the counter variables under the sealing (lax) modality [C \ τ ] ; this
causes them to be erased by the default compiler. Noninterference / modal phase
splitting automatically ensures that input-output behavior of compiled programs
cannot depend on the values of counters.

16 / 21



instrumenting a program
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instrumenting a program

val counter : [C \ int] ref =
ref (seal 0)

fun myfun () =

Ref.update (Seal.map Int.incr) counter;

mybody()
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the program at phase C

val counter : unit ref =
ref ()

fun myfun () =
Ref.update (Seal.map Int.incr) counter;
mybody()
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Prospects and future work

Several applications of our phase distinction metalanguage already developed:
▶ [JACM] Parametricity for ML modules (Sterling and Harper, 2021)
▶ [LICS’21] Normalization for cubical type theory (Sterling and Angiuli, 2021)
▶ Normalization for multi-modal type theory (Gratzer, 2021)
▶ A cost-aware logical framework, proof-relevant type refinements (Niu et al., 2021)

Next steps:
▶ Develop connection to security typing/IFC (j.w.w. Balzer and Harper)
▶ Elaboration of high-level module constructs to metalanguage (j.w.w. Harper)
▶ Adapt for step-indexed logical relations (j.w.w. Birkedal)
▶ Prototype implementation in cooltt prover (j.w.w. Angiuli, Favonia, Mullanix)
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