Normalization for Cubical Type Theory

Jonathan Sterling Carlo Angiuli
Carnegie Mellon University

LICS '21

\(\text{\textcircled{TT}}\): cubical type theory

\(\text{\textcircled{TT}}\) is an extension of Martin-Löf’s Intensional Type Theory by an interval:
- a new sort \(\Gamma \vdash I\) and context extension \(\Gamma, i : \Pi \rightarrow \Gamma\)
- with endpoints \(\Gamma \vdash 0, 1 : \Pi\)
- and potentially further structure: \(r \sqcup s, r \sqcap s, \sim r\) [Coh+17]

Why? A new way to think about equality (paths) as figures of shape \(\Pi\).

\[
(a =_A b) := \{p : \Pi \rightarrow A \mid p(0) \equiv a \land p(1) \equiv b\}
\]

Supports function extensionality, type extensionality (univalence), and effective quotients.
Unlike HoTT, cubical type theory has good computational properties.

Theorem (Cubical canonicity [AFH18; Hub18])

If $\mathbb{I}^n \vdash M : \text{bool}$ is a closed n-cube of booleans, then either $\mathbb{I}^n \vdash M \equiv \text{tt} : \text{bool}$ or $\mathbb{I}^n \vdash M \equiv \text{ff} : \text{bool}$.

Therefore □TT can be used as a programming language [Ang+21], and we have multiple implementations, e.g. Cubical Agda, redtt, cooltt [Red18; Red20; VMA19].

Canonicity is only about computation in *purely cubical* contexts $i, j, k : \mathbb{I}$. **Implementation** requires computation in *arbitrary* contexts, *i.e.* normalization.
In what contexts do we compute?

\[\Psi \vdash M : A \Downarrow \Gamma \]

canonicity:
- \(A \in \{ \text{nat} \} \)
- \(V \in \mathbb{N} \)

normalization:
- \(A \in \{ \Psi \vdash \text{type} \} \)
- \(V \in \{ \Psi \vdash \beta\eta \text{nf} A \} \)
- \(\Gamma \in \{ \vdash \text{ctx} \} \)

cubical canonicity:
- \(\Gamma \in \{ I_{\text{in}} \mid n \in \mathbb{N} \} \)
In what contexts do we compute?

\[
\Psi \vdash M : A \Downarrow V
\]
In what contexts do we compute?

\[\Psi \vdash M : A \downarrow V \]

canonicity:
- \(A \in \{ \text{nat} \} \)
- \(V \in N \)
- \(\Gamma \in \{ \cdot \} \)
- Cubical canonicity: \(\Gamma \in \{ \text{In} | n \in \mathbb{N} \} \)

normalization:
- \(A \in \{ \Psi \vdash \text{type} \} \)
- \(V \in \{ \Psi \vdash \text{\(\beta\eta\)}\text{nf} A \} \)
- \(\Gamma \in \{ \vdash \text{ctx} \} \)
In what contexts do we compute?

\[\psi \vdash M : A \downarrow V \]

canonicity: \(A \in \{ \text{nat} \} \);

normalization: \(A \in \{ \psi \vdash \text{type} \} \);

\(\Gamma \in \{ \cdot \} \); cubical canonicity: \(\Gamma \in \{ I_n | n \in \mathbb{N} \} \);

\(\Gamma \in \{ \vdash \text{ctx} \} \);

element

context

observation
In what contexts do we compute?

canonicity: \(A \in \{\text{nat}\} \); normalization: \(A \in \{\psi \vdash \text{type}\} \)
In what contexts do we compute?

Canonicity: $A \in \{\text{nat}\}$; **Normalization:** $A \in \{\Psi \vdash \text{type}\}$

Canonicity: $V \in \mathbb{N}$; **Normalization:** $V \in \{\Psi \vdash^{\beta\eta} \text{nf } A\}$
In what contexts do we compute?

canonicity: $A \in \{\text{nat}\}$; **normalization:** $A \in \{\Psi \vdash \text{type}\}$

canonicity: $V \in \mathbb{N}$; **normalization:** $V \in \{\Psi \mid^\beta\eta\text{nf} A\}$

canonicity: $\Gamma \in \{\cdot\}$; **cubical canonicity:** $\Gamma \in \{\Pi^n | n \in \mathbb{N}\}$; **normalization:** $\Gamma \in \{\vdash \text{ctx}\}$
Stability of observation *sans* \parallel

$$\frac{\textstyle x : \text{nat}}{\textstyle \downarrow \text{var}(x)}$$

In ITT, neutral observations (elimination forms blocked on variables) are closed under renaming, but not full substitution. Therefore, computation takes place in the Artin gluing of $\Pr(\text{C})$ and $\Pr(\text{R})$ where $\text{R} : \text{Cat}/\text{C}$ is the category of contexts and renamings (c.f. Kripke logical relations).
Stability of observation *sans* II

\[\bullet \xrightarrow{\text{fib}(9)/x} x : \text{nat} \vdash x : \text{nat} \Downarrow \text{var}(x) \]
Stability of observation \textit{sans} II

\[
\bullet \xrightarrow{[\text{fib}(9)/x]} x : \text{nat} \vdash x : \text{nat} \Downarrow \text{var}(x)
\]

\[
\text{fib}(9) : \text{nat}
\]
Stability of observation \textit{sans} II

In ITT, neutral observations (elimination forms blocked on variables) are closed under renaming, but not full substitution. Therefore, computation takes place in the Artin gluing of $\mathcal{Pr}(C) \mathcal{Pr}(R)$ where $R : \text{Cat}/C$ is category of contexts and renamings (c.f. Kripke logical relations).
Stability of observation *sans* II

In **ITT**, neutral observations (elimination forms blocked on variables) are closed under *renaming*, but not full substitution.
In ITT, neutral observations (elimination forms blocked on variables) are closed under renaming, but not full substitution.

Therefore, computation takes place in the Artin gluing of $\text{Pr}(C) \rightarrow \text{Pr}(\mathcal{R})$ where $\mathcal{R} : \text{Cat}/C$ is category of contexts and renamings (c.f. Kripke logical relations).
Instability of observation avec \Box

Unfortunately, removing the substitutions for which neutral observations are unstable is not possible for $\Box\top\top$. The problem is the interval:
Instability of observation avec \(\Box \)

Unfortunately, removing the substitutions for which neutral observations are unstable is not possible for \(\Box \mathsf{TT} \). The problem is the interval:

\[
\begin{array}{c}
p : \text{fib} \Rightarrow_{\mathsf{nat}} \mathsf{nat} \quad i : \Box \\
\vdash (p \circ i) 9 : \mathsf{nat} \Downarrow \text{app(papp(var(p), i), su}^9(\varepsilon))
\end{array}
\]
Unfortunately, removing the substitutions for which neutral observations are unstable is not possible for TT. The problem is the interval:

$$p : \text{fib} =_{\text{nat} \rightarrow \text{nat}} \text{fib}, \ i : \ I \Downarrow (p @ i) \, 9 : \ \text{nat} \Downarrow \ \text{app}(\text{papp}(\text{var}(p), \ i), \ \text{su}^9(\varepsilon))$$

We cannot remove $[0/i]$ from the category of contexts and renamings because we need I to restrict to something representable in $\text{Pr}(\text{R})$, c.f. tininess criterion [Lic+18].
Unfortunately, removing the substitutions for which neutral observations are unstable is not possible for \(\square \mathbb{T} \mathbb{T} \). The problem is the interval:

\[
p : \text{fib} =_{\text{nat} \rightarrow \text{nat}} \text{fib}, \ i : \mathbb{I} \vdash (p \ @ \ i) \ 9 : \text{nat} \downarrow \text{app(papp(var(p), i), su^9(\varepsilon))}
\]

We cannot remove \([0/i], [1/i]\) from the category of contexts and renamings because we need \(I\) to restrict to something representable in \(\mathcal{P}(R)\), c.f. tininess criterion \([\text{Lic}+18]\).
Unfortunately, removing the substitutions for which neutral observations are unstable is not possible for $\Box T T$. The problem is the interval:

$p : \text{fib} =_{\text{nat} \rightarrow \text{nat}} \text{fib}, i : \Box \vdash (p @ i) \, 9 : \text{nat} \downarrow \text{app}(\text{papp}(\text{var}(p), i), \text{su}^9(\xi))$

We cannot remove $[0/i], [1/i]$ from the category of contexts and renamings because we need I to restrict to something representable in $\text{Pr}(R)$, c.f. tininess criterion [Lic+18].
Instability of observation avec \(\square\)

Unfortunately, removing the substitutions for which neutral observations are unstable is not possible for \(\square\text{T T}\). The problem is the interval:

\[
p : \text{fib} =_{\text{nat} \rightarrow \text{nat}} \text{fib}, i : \square \vdash (p \circ i) 9 : \text{nat} \downarrow \text{app} (\text{papp} (\text{var} (p), i), \text{su}^9 (\tilde{e}))
\]

We cannot remove \([0/i], [1/i]\) from the category of contexts and renamings because we need \(\square\) to restrict to something representable in \(\mathcal{P} \mathcal{R}\), c.f. tininess criterion [Lic+18].
The power of dialectical thinking

Thesis: neutrals need to have a cubical substitution action.
The power of dialectical thinking

Thesis: neutrals need to have a cubical substitution action.

Antithesis: positive neutrality is not a cubical notion: under face maps \([\epsilon/i]\) a neutral observation can cease ‘being neutral’.
The power of dialectical thinking

Thesis: neutrals need to have a cubical substitution action.

Antithesis: positive neutrality is not a cubical notion: under face maps $[\epsilon/i]$ a neutral observation can cease ‘being neutral’.

Synthesis: the conditions under which a given neutral destabilizes are cubical. Given a neutral form $e : A$, write ∂e for this *frontier of instability*.
The power of dialectical thinking

Thesis: neutrals need to have a cubical substitution action.

Antithesis: positive neutrality is not a cubical notion: under face maps $[\epsilon/i]$ a neutral observation can cease ‘being neutral’.

Synthesis: the conditions under which a given neutral destabilizes are cubical. Given a neutral form $e : A$, write ∂e for this *frontier of instability*.

$$\partial(\text{var}(x)) = \bot$$
The power of dialectical thinking

Thesis: neutrals need to have a cubical substitution action.

Antithesis: positive neutrality is not a cubical notion: under face maps $[\epsilon/i]$ a neutral observation can cease ‘being neutral’.

Synthesis: the conditions under which a given neutral destabilizes are cubical. Given a neutral form $e : A$, write ∂e for this *frontier of instability*.

\[
\partial(\text{var}(x)) = \perp \\
\partial(\text{app}(E, M)) = \partial E
\]
The power of dialectical thinking

Thesis: neutrals need to have a cubical substitution action.

Antithesis: positive neutrality is not a cubical notion: under face maps \([\epsilon/i]\) a neutral observation can cease ‘being neutral’.

Synthesis: the conditions under which a given neutral destabilizes are cubical. Given a neutral form \(e : A\), write \(\partial e\) for this *frontier of instability*.

\[
\begin{align*}
\partial(\text{var}(x)) &= \bot \\
\partial(\text{app}(E, M)) &= \partial E \\
\partial(\text{fst}(E)) &= \partial E
\end{align*}
\]

Therefore, we define an inductive family \(\text{Ne}_\phi(A)\) of neutrals \(Tm(A)\) of neutrals with \(\partial e = \phi\). Traditional neutrals = \(\text{Ne}_\bot(A)\); to model destabilization, \(\text{Ne}_\top(A) \sim Tm(A)\).
The power of dialectical thinking

Thesis: neutrals need to have a cubical substitution action.

Antithesis: positive neutrality is not a cubical notion: under face maps $[\epsilon/i]$ a neutral observation can cease ‘being neutral’.

Synthesis: the conditions under which a given neutral destabilizes are cubical. Given a neutral form $e : A$, write ∂e for this frontier of instability.

\[
\partial(\text{var}(x)) = \bot \\
\partial(\text{app}(E, M)) = \partial E \\
\partial(\text{fst}(E)) = \partial E \\
\partial(\text{papp}(E, r)) = \partial E \lor (r = 0) \lor (r = 1)
\]
The power of dialectical thinking

Thesis: neutrals need to have a cubical substitution action.

Antithesis: positive neutrality is not a cubical notion: under face maps \([\epsilon/i]\) a neutral observation can cease ‘being neutral’.

Synthesis: the conditions under which a given neutral destabilizes are cubical. Given a neutral form \(e : A\), write \(\partial e\) for this *frontier of instability*.

\[
\begin{align*}
\partial(\text{var}(x)) &= \bot \\
\partial(\text{app}(E, M)) &= \partial E \\
\partial(\text{fst}(E)) &= \partial E \\
\partial(\text{papp}(E, r)) &= \partial E \lor (r = 0) \lor (r = 1)
\end{align*}
\]

Therefore, we define an inductive family \(\text{Ne}_\phi(A) \to \text{Tm}(A)\) of neutrals \(e\) with \(\partial e = \phi\). Traditional neutrals = \(\text{Ne}_\bot(A)\); to model destabilization, \(\text{Ne}_\top(A) \cong \text{Tm}(A)\).
The standard **Tait yoga**

Tait [Tai67] introduced the famous *saturation yoga* for normalization.

![Diagram](attachment:diagram.png)
Tait [Tai67] introduced the famous saturation yoga for normalization.
The standard Tait yoga

Tait [Tai67] introduced the famous saturation yoga for normalization.
The standard Tait yoga

Tait [Tai67] introduced the famous saturation yoga for normalization.
Tait [Tai67] introduced the famous *saturation yoga* for normalization.

![Diagram of Tait yoga](image)
What if $\phi = \top$? We must strengthen the induction hypothesis.
Tait’s yoga with unstable neutrals

What if $\phi = \top$?
Tait’s yoga with unstable neutrals

What if $\phi = T$?
Tait's yoga with unstable neutrals

What if $\phi = \top$?

We must strengthen the induction hypothesis.
Tait’s yoga with unstable neutrals

What if $\phi = \top$? We must strengthen the induction hypothesis.
Stabilization of neutrals

Unstable neutrals are glued together with compatible computability data along their frontiers of instability.
Unstable neutrals are **glued together** with compatible computability data along their frontiers of instability.
A spectrum of computability data

$\text{Ne}_{\phi \bot}([A])$

$\text{Ne}_{\bot}([A])$

\bot ϕ \top

ϕ ϕ $[A]$

Stabilization interpolates between neutrals and computability data.
A spectrum of computability data stabilized neutrals

Ne_{\phi \wedge \phi} [A]

\text{Ne}_{\perp} (A) \rightarrow [A]

⊥ \rightarrow \phi \rightarrow T
A spectrum of computability data

\perp (Ne)

$\perp \top \phi \lambda \phi [A]$

Stabilized neutrals

"conventional neutrals"

$\text{Ne}_\phi \lambda \phi [A]$

\perp

\top

ϕ

\perp

$[A]$

$[A]$

\top

ϕ

\perp
A spectrum of computability data

\[\text{Ne}_{\varphi \land \varphi} [A] \]

stabilized neutrals

“conventional neutrals”

“computability data”

Stabilization interpolates between neutrals and computability data.
Stabilization interpolates between neutrals and computability data.
The stabilized Tait yoga

\[\phi \Rightarrow [A] \]

Theorem. Every type is closed under the stabilized Tait yoga.
The stabilized Tait yoga

\[\phi \Rightarrow [A] \]

\[
\begin{align*}
\text{Ne}_\phi(A) \& \phi [A] & \mapsto [A] \\
\text{Ne}_\phi(A) & \mapsto Tm(A)
\end{align*}
\]

Theorem.
Every type is closed under the stabilized Tait yoga.
The stabilized Tait yoga

\[\text{Every type is closed under the stabilized Tait yoga.} \]
The stabilized Tait yoga

\[\text{Ne}_\phi(A) \sqsubseteq \phi \left[A \right] \]

\[\phi \Rightarrow \left[A \right] \]

\[\left[A \right] \]

\[\text{Tm}(A) \]

\[\text{Nf}(A) \]

Theorem. Every type is closed under the **stabilized** Tait yoga.
Summary of results

For univalent \(\square \mathbb{TT} \) without universes, we have proved the following results:

1. Every type and every term has a *unique* normal form.
2. Judgmental equality of types and terms is decidable.
3. Type constructors (e.g. \(\Pi \)) are injective.
4. Type checking is decidable (corollary of 1–3).

Forthcoming: S. has extended this result to \(\square \mathbb{TT} \) with a countable hierarchy of univalent universes [Ste21].

References II

References III

