[002I] Definition 4.3·c (Agreement on a class of figure shapes).

Let $\bar{s}$ be a displayed object in a cartesian fibration $E$ over $B$. A pair of displayed morphisms $f,g:\bar{x}\to \bar{y}\in E$ are said to agree on $\bar{s}$-figures when for any $\bar{s}$-figure $h : \bar{z}\to \bar{x}$ in the sense of Definition 2.9·b [002K], we have $h;f = h;g : \bar{z}\to \bar{y}$.