In the category of sets, to compare two morphisms it is enough to check that they agree on global points. This means that the unary family $\brc{\ObjTerm{\SET}}$ is a separator for $\SET$, a property referred to more generally as well-pointedness.
In the category of sets, to compare two morphisms it is enough to check that they agree on global points. This means that the unary family $\brc{\ObjTerm{\SET}}$ is a separator for $\SET$, a property referred to more generally as well-pointedness.