[001S] Theorem 5.3·a.

The externalization $\brk{\gl{\bar{u}}}$ of the internal category $\gl{\bar{u}}$ is equivalent to $\FullSubfib{\bar{u}}$.

Proof. We will define a fibred equivalence $F : \brk{\gl{\bar{u}}}\to \FullSubfib{\bar{u}}$ over $B$.

  1. Fix $x\in B$ and $\chi\Sub{x} \in \brk{\gl{\bar{u}}}\Sub{x}$, i.e. $\chi\Sub{x} : x\to u$; we define $F\prn{\chi\Sub{x}}$ to be an arbitrary cartesian map $\phi\Sub{x} : \bar{x}\to\Sub{\chi\Sub{x}} \bar{u}$. (Here we have used the axiom of choice for collections [000R].)

  2. Fix $f : x\to y\in B$ and $\chi\Sub{x} :x\to u$ and $\chi\Sub{y}:y\to u$ and a diagram representing a displayed morphism $h$ from $\chi\Sub{x}$ to $\chi\Sub{y}$ over $f$ as below:

    We must define $F\prn{h}:\bar{x}\to\Sub{f} \bar{y}$, fixing arbitrary cartesian maps $\bar\chi\Sub{x}:\bar{x}\to\Sub{\chi\Sub{x}}\bar{u}$ and $\bar\chi\Sub{y}:\bar{y}\to\Sub{\chi\Sub{y}}\bar{u}$. First we lift $h:x\to \brk{\bar\partial\Sub{1},\bar\partial\Sub{2}}$ into $E$ using the universal property of the cartesian lift:

    By composition with the “evaluation map” for our hom object, we have a map $\bar{x}\to\Sub{f;\chi\Sub{y}}\bar{u}$:

    Next we define $F\prn{h}:\bar{x}\to\Sub{f}\bar{y}$ using the universal property of (another) cartesian lift: