#### 2.6.3. Exegesis of opposite categories [000S]

The construction of fibered opposite categories (Construction 2.6·a [001Z]) does appear quite involved, but it can be seen to be inevitable from the perspective of the fiber categories $\OpCat{E}\Sub{x}$ (Section 2.5 [0005]). Indeed, let $u,v\in \OpCat{E}\Sub{x}$ and fix a vertical map $h : u \to v\in \OpCat{E}\Sub{x}$; by unfolding definitions, we see that the vertical map $h : u \to v$ is uniquely determined by a morphism $v\to u\in E\Sub{x}$.

Proof. A displayed morphism $u\to\Sub{\Idn{x}} v\in \OpCat{E}$ is determined by a span $\brc{u\leftarrow v\Sub{x} \to v}\in E$ where the right-hand map is cartesian over $\Idn{x} : x\to x$ and the left-hand map is vertical, taken up to the identification of different cartesian lifts $v\Sub{x}\to x$. A displayed morphism that is cartesian over the identity is an isomorphism; hence, displayed morphisms $u\to\Sub{\Idn{x}} v\in\OpCat{E}$ are equivalently determined by vertical maps $v\to u \in E$.