
A synthetic realignment theorem

Jonathan Sterling

October 24, 2020

(0·1) Orton and Pitts [OP16] noted that the Hofmann–Streicher universes [HS97]
of Pr(C) support a univalence-like strictification principle. Working internally to
Pr(C), let φ : Ω be a proposition; for each A : U and Aφ : [φ] → U together with
fφ :

∏
z:[φ](A

∼= Aφ(z)), there is a type G := GlueA [φ → (Aφ,fφ)] : U together with
an isomorphism g : A ∼= G with the property that under [φ], we have G = Aφ and
g = fφ strictly.

(0·2) The first application of the strictification theorem (0·1) is to implement a univa-
lent universe in models of cubical type theory [OP16; Ang+19]. More recently, Sterling
and Harper [SH20] and Sterling and Gratzer [SG20] have applied the strictification
principle of Orton and Pitts to develop a “synthetic Tait computability” over any
presheaf topos equipped with a partition into open and closed subtopoi. The purpose
of the strictification in this setting is to construct universes of computability families
together with codes that lie directly over certain syntactic codes, and thereby trivialize
the difficult construction of the computability models for dependent type theory.

(0·3) Synthetic Tait computability axiomatizes certain aspects of the situation of
recollement/gluing of topoi along the “boundary” between a pair of complementary
open/closed subtopoi; the application of synthetic Tait computability to prove metathe-
orems for type theories and programming languages is carried out by finding an open
subtopos XU X such that the syntactic category of a given type theory can be
embedded into Sh(XU).

1 Lex idempotent modalities and dependent types

(1·1) Let X be a topos and let E = Sh(X); let # : E E be a lex monad on E .
In this situation, we may internalize # as a modality in the internal type theory of
X . Let Γ be a sheaf on X , and let E : E/Γ be a family of sheaves over Γ; we define
#ΓE : E/Γ by functoriality and pullback along the unit as follows:

#̃ΓE

Γ

#ΓE

#Ẽ

#Γ

#E

ηΓ

Ẽ

E

η
Ẽ

η
E

(1·1·1)

1

To see that we actually have a type theoretic connective, we must check that the
following square commutes up to isomorphism for each γ : ∆ Γ in E .

E/Γ

E/∆

γ∗

E/Γ

E/∆

#Γ

γ∗

#∆
(1·1·2)

To check this, we fix E : E/Γ and compute #∆(γ∗E) : E/∆; below, the right-hand
square is a pullback square because # is left exact, and therefore the outer square is
also a pullback square.

#̃∆γ∗E

∆

#∆γ
∗E

#γ̃∗E

#∆

#γ∗E

η∆

#Ẽ

#Γ

#E

#γ
(1·1·3)

But the axioms of the monad guarantee that #γ ◦ η∆ = ηΓ ◦ γ, so Diagram 1·1·3 is
isomorphic to Diagram 1·1·4 below:

γ̃∗#ΓE

∆

γ∗#ΓE

#̃ΓE

Γ

#ΓE

γ

#Ẽ

#Γ

#E

ηΓ
(1·1·4)

(1·2) Every topos has a hierarchy of type theoretic universes; on a presheaf topos
these are obtained as in Hofmann and Streicher [HS97], and over a localization thereof,
they are obtained by sheafification as in Streicher [Str05]. Under mild size constraints,
this localization process internalizes into the type theory in a certain sense.

When U̇ U is the generic family for a given universe, we may ask for the
corresponding map #U̇ #U to be U -small in the sense that we have a pullback
square in the following configuration:

#U̇

#U

U̇

U
#̂

The family #U̇ #U serves as a strict replacement for the universe of #-modal
types: indeed, any small type that is #-modal has (at least) one code in #U . The

2

benefit of this construction over {A : U | A is #-modal} is that the latter would itself
not be modal, whereas the former is. If we make sure that the universe of modal types
is modal, we can accomodate hierarchies of universes of modal types. Hereafter, we
write U# for #U .

The “dependent modality” #̂ : U# U can be seen as the internal version of the
direct image part of the open immersion determined by #; the unit η : U U# acts
as the inverse image part of the immersion, i.e. the sheafification. Composing these,
one obtains an internal monad U U , the “non-dependent modality”.

2 Open and closed modality

(2·1) In the category of sheaves Sh(X), an open subtopos XU is internalized as a
proof-irrelevant propositions U : Ω, called an open [AGV72]. Externally, any sheaf E
on X can be thought of as a étale topos XE X lying over X , corresponding under
inverse image to the base change E∗ : Sh(X) Sh(X)/E. Geometrically, the étale
topos can be intersected with the open subtopos:

X#E

XU

XE

X

The sheaf corresponding to the étale map X#E X is the exponential #E := EU;
the assignment E #E can be seen to be the (lex idempotent) monad induced by
the adjunction j∗ a j∗ where j : XU X is the open immersion. As in Section 1, the
subtopos becomes an open modality [RSS20] on the universes of the type theory.

(2·2) The closed complement of XU is the topos X\U corresponding to the full sub-
category of E spanned by #-connected sheaves E, in the sense that #E ∼= 1. The
corresponding monad : E E can be defined as a pushout:

E×U

E

U

 E

The monad is immediately seen to be idempotent, and it is seen to be lex as well. One
quickly checks that the modality isolates exactly the #-connected sheaves; following
Section 1, we may also internalize as a modality in the type theory.

(2·3) The fracture theorem [AGV72; RSS20]. Let E : E be any sheaf; the following

3

diagram is a pullback square:

E

#E

η◦E

 E

 #E

η•E

 η◦E

η•#E

(2·4) The significance of (2·3) is that it provides that every sheaf is totally determined
by its restriction to the open and closed subtopoi respectively; this is the “microcosmic”
view of the fact that the topos X can be obtained by gluing together XU and the
complement X\U along a “boundary” determined by U. The fracture theorem (2·3)
also internalizes into the universes of the type theory, as pointed out by Rijke, Shulman,
and Spitters [RSS20].

3 Realignment in synthetic Tait computability

(3·1) A syntactic metatheorem for a type theory T is proved by finding a suitable
topos X equipped with an open immersion j : T̂ X ; the choice of X is determined
by what sort of metatheorem one wishes to prove. Then, the main theorem is attacked
by constructing an algebra for T over X that restricts along the open immersion to
the syntactic algebra over T̂.

(3·2) When constructing the “computability algebra” in (3·1), we often end up with
a construction that lies not over the corresponding sort in the syntactic algebra, but
over one of its isomorphs. Consider, for instance, the case of the “walking type theory”;
here, one has in E = Sh(X) a #-modal type tp : U# and a family of #-modal types
el : #̂tp U#.

(3·3) For the computability algebra, we need to define a type tp* : U such that
∀z : [U].tp* = tp(z) strictly. Our first attempt will satisfy this condition only up to
isomorphism:

tp* =
∑

A:#̂tp
{A* : U | ∀z : U.A* = el(A)(z)} (*)

We obviously have ∀z : [U].tp* ∼= tp(z) because under the assumption of a proof of
[U], the second component of the dependent sum is a singleton. If the Orton–Pitts
strictification axiom (0·1) holds for the universe U , we can realign our construction to
extend tp strictly as desired, choosing φ := U. The realignment principle is used again
and again by Sterling and Harper [SH20] to obtain simple and conceptual constructions
of the computability structure for the connectives of type theory.

(3·4) Unfortunately, the Orton–Pitts axiom (0·1) is only known to hold for the
Hofmann–Streicher universes in categories of presheaves; the sheafified universes à la
Streicher [Str05] do not seem to have this property. Luckily, many gluing situations
for dependent type theory end up involving only presheaf universes; but we will not
always be so lucky, e.g. consider the the case of normalization of type theory with strict
coproducts [Alt+01]. The purpose of this note is to give an alternative construction
of universes on glued topoi that supports the realignment at a specific open U : Ω.

4

4 A construction of universes that support realignment

(4·1) In this section, we will work in the internal language of a sheaf topos X together
with an open U; we assume the corresponding open and closed modalities, as well as
their fracture theorem (2·3). Let U refer to an ordinary universe in E = Sh(X); we
will treat the decodings of U implicitly, but it is important to remember that these
decodings only commute with connectives up to isomorphism in a category of sheaves.

(4·2) We define a new universe elW : W → U as follows, as in Rijke, Shulman, and
Spitters [RSS20]:

record W where
opn : U#
clsd : U
proj : ̂clsd→ #̂opn

record elW (A : W) where
opn : #̂(A.opn)
clsd : ̂(A.clsd)
match : A.proj(clsd) = #̂A.opn

η•...opn

It will not be the case that W ∼= U ; this is because W carries additional data
that is not uniquely determined up to strict equality. However, this data is uniquely
determined up to isomorphism by the fracture theorem (2·3), which is the essential
insight behind our construction.

(4·3) There is a “promotion” operator that takes a piece of the open part of some
A : W and turns it an entire element of A under the assumption of z : [U], recalling
that X ∼= 1 in this context.

⇑z : A.opn(z)→ elW (A)

⇑z(a).opn = η◦A.opn(z)(a)

⇑z(a).clsd = ?

⇑z(a).proj = ?

(4·4) We may define a canonical “fracturing map” frac : U → W as follows:

frac : U → W

frac(A).opn = η◦U A

frac(A).clsd = η•U A

frac(A).proj(m) = x← m ; η•#Aη
◦
Ax

For each A : U , we have an isomorphism elW (frac(A)) ∼= A; unfolding definitions,
it is easy to see that this is exactly the content of the fracture theorem (2·3). Hence,
we see that W is generic for the same class of types as U .

(4·5) Realignment. Let A : W and AU : U# together with a modal function fU :
#̂(λz.elW (A)→ AU(z)). We can realign A to lie over AU as follows:

Glue(A,AU,fU).opn = AU

Glue(A,AU,fU).clsd = A.clsd

Glue(A,AU,fU).proj(m) = a← A.proj(m) ; η•...(λz.fU(z,⇑za(z)))

We additionally have an introduction map glueA,AU,fU :

glueA,AU,fU : elW (A)→ elW (Glue(A,AU,fU))

5

glueA,AU,fU(x).opn = λz.fU(z,x)

glueA,AU,fU(x).clsd = x.clsd

glueA,AU,fU(x).match = ?

To substantiate the last clause glueA,AU,fU(x).match, we must check the following
equation:

(η•...(λz.fU(z,x))) = (a← A.proj(x.clsd) ; η•...(λz.fU(z,⇑za(z)))) (4·5·1)

From x.match, we have A.proj(x.clsd) = η•...(x.opn), hence we may rewrite our goal:

(η•...(λz.fU(z,x))) = (η•...(λz.fU(z,⇑z(x.opn(z))))) (4·5·2)

Under the assumption z : [U], we have ⇑z(x.opn(z)) = x, however, so we are done.

(4·6) Under the assumptions of (4·5), further assume that fU is a modal isomorphism
with modal inverse f̄U. We may define an elimination map unglue that we will later
see to be an inverse to glueA,AU,fU :

unglueA,AU,f̄U
: elW (Glue(A,AU,fU))→ elW (A)

unglueA,AU,f̄U
(x).opn = λz.(f̄U(z,x.opn(z))).opn(z)

unglueA,AU,f̄U
(x).clsd = x.clsd

unglueA,AU,f̄U
(x).match = ?

For the last clause unglueA,AU,f̄U
(x).match, we must check the following equation:

A.proj(x.clsd) = η•...(λz.g(z,x.opn(z)).opn(z)) (4·6·1)

From x.match, we have the following:(
a← A.proj(x.clsd) ; η•...(λz.fU(z,⇑za(z)))

)
= (η•...x.opn) (4·6·2)

Keeping Equation (4·6·2) in mind, we rewrite the right-hand side of Equation (4·6·1):

η•...(λz.f̄U(z,x.opn(z)).opn(z))

= u← η•...x.opn ; η•...(λz.f̄U(z,u(z)).opn(z))

= u←
(
a← A.proj(x.clsd) ; η•...(λz.fU(z,⇑za(z)))

)
; η•...(λz.f̄U(z,u(z)).opn(z))

= a← A.proj(x.clsd) ; η•...(λz.f̄U(z, fU(z,⇑za(z))).opn(z))

= a← A.proj(x.clsd) ; η•...(λz.⇑za(z).opn(z))

= a← A.proj(x.clsd) ; η•...(a)

= A.proj(x.clsd)

(4·7) Under the assumptions of (4·5) and (4·6), we observe that unglueA,AU,f̄U
is both

left and right inverse to glueA,AU,fU ; on x.opn, this follows from the fact that fU is
inverse to f̄U, and on the closed part, it follows because neither function does anything
to x.clsd.

6

5 Concluding remarks

(5·1) Our strictification construction apparently suffices for the needs of synthetic Tait
computability, where one is realigning always at a single proposition U : Ω. It does not
appear to be enough, however, to validate the full Orton–Pitts strictification axiom
(0·1), so it remains an open question whether the methods of Orton and Pitts [OP16]
can be used to construct models of univalent type theory in non–presheaf topoi.

References

[AGV72] Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Théorie
des topos et cohomologie étale des schémas. Séminaire de Géométrie Algébrique
du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck,
et J.-L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B.
Saint-Donat, Lecture Notes in Mathematics, Vol. 269, 270, 305. Berlin:
Springer-Verlag, 1972 (cit. on p. 3).

[Alt+01] T. Altenkirch, P. Dybjer, M. Hofmann, and P. Scott. “Normalization by
Evaluation for Typed Lambda Calculus with Coproducts”. In: Proceed-
ings of the 16th Annual IEEE Symposium on Logic in Computer Sci-
ence. Washington, DC, USA: IEEE Computer Society, 2001, pp. 303–. doi:
871816.871869 (cit. on p. 4).

[Ang+19] Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou
(Favonia), Robert Harper, and Daniel R. Licata. Syntax and Models of
Cartesian Cubical Type Theory. Preprint. Feb. 2019. url: https://github.
com/dlicata335/cart-cube (cit. on p. 1).

[HS97] Martin Hofmann and Thomas Streicher. “Lifting Grothendieck Universes”.
Unpublished note. 1997. url: https://www2.mathematik.tu-darmstadt.
de/∼streicher/NOTES/lift.pdf (cit. on pp. 1, 2).

[OP16] Ian Orton and Andrew M. Pitts. “Axioms for Modelling Cubical Type
Theory in a Topos”. In: 25th EACSL Annual Conference on Computer
Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France.
2016, 24:1–24:19 (cit. on pp. 1, 7).

[RSS20] Egbert Rijke, Michael Shulman, and Bas Spitters. “Modalities in homotopy
type theory”. In: Logical Methods in Computer Science Volume 16, Issue 1
(Jan. 2020). doi: 10.23638/LMCS-16(1:2)2020. arXiv: 1706.07526. url:
https://lmcs.episciences.org/6015 (cit. on pp. 3–5).

[SG20] Jonathan Sterling and Daniel Gratzer. “Lectures on Synthetic Tait Com-
putability”. Unpublished notes. 2020 (cit. on p. 1).

[SH20] Jonathan Sterling and Robert Harper. “Logical Relations As Types: Proof-
Relevant Parametricity for Program Modules”. Unpublished draft. 2020.
url: http://www.jonmsterling.com/pdfs/lrat.pdf (cit. on pp. 1, 4).

7

https://doi.org/871816.871869
https://github.com/dlicata335/cart-cube
https://github.com/dlicata335/cart-cube
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://doi.org/10.23638/LMCS-16(1:2)2020
https://arxiv.org/abs/1706.07526
https://lmcs.episciences.org/6015
http://www.jonmsterling.com/pdfs/lrat.pdf

[Str05] Thomas Streicher. “Universes in toposes”. In: From Sets and Types to
Topology and Analysis: Towards practical foundations for constructive
mathematics. Ed. by Laura Crosilla and Peter Schuster. Vol. 48. Oxford
Logical Guides. Oxford: Oxford University Press, 2005, pp. 78–90. isbn:
978-0-19-856651-9. doi: 10.1093/acprof:oso/9780198566519.001.0001
(cit. on pp. 2, 4).

8

https://doi.org/10.1093/acprof:oso/9780198566519.001.0001

	Lex idempotent modalities and dependent types
	Open and closed modality
	Realignment in synthetic Tait computability
	A construction of universes that support realignment
	Concluding remarks
	References

