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In the subjectivization of mathematical objects, the activity of a scientist centers
on the arti�cial delineation of their characteristics into de�nitions and theorems. De-
pending on the ends, di�erent delineations will be preferred; in these notes, we prefer
to work with concise and memorable de�nitions constituted from a common body of
semantically rich building blocks, and treat alternative characterizations as theorems.

Other texts To learn toposes and sheaves thoroughly, the reader is directed to study
Mac Lane and Moerdijk’s excellent and readable Sheaves in Geometry and Logic [8];
also recommended as a reference is the Stacks Project [13]. �ese notes serve only as a
supplement to the existing material.

Acknowledgments I am grateful to Jonas Frey, Pieter Hofstra, Ulrik Buchholtz, Bas
Spi�ers and many others for explaining aspects of category theory and topos theory
to me, and for pu�ing up with my ignorance. All the errors in these notes are mine
alone.

1 Toposes for concepts in motion

Do mathematical concepts vary over time and space? �is question is the fulcrum on
which the contradictions between the competing ideologies of mathematics rest. Let
us review their answers:

Platonism No.

Constructivism Maybe.

Intuitionism Necessarily, but space is just an abstraction of time.

Vulgar constructivism No.1

Brouwer’s radical intuitionism was the �rst conceptualization of mathematical
activity which took a positive position on this question; the incompatibility of intuition-
ism with classical mathematics amounts essentially to the fact that they take opposite
positions as to the existence of mathematical objects varying over time.

1I mean, of course, the Markov school.
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Constructivism, as exempli�ed by Bishop [2] takes a more moderate position: we
can neither con�rm nor deny the variable character of mathematical concepts. In this
way, mathematics in Bishop’s sense is simultaneously the mathematics of all forms of
variation, including the chaotic (classical) form.

�is dispute has been partly trivialized under the unifying perspective of toposes,2
which allow the scienti�c study of mathematical systems and their relationships,
including Platonism (the category of sets), constructivism (the free topos), intuitionism
(the topos of sheaves over the universal spread)3 and vulgar constructivism (the e�ective
topos).

Toposes have both a geometric and a logical character; the geometric aspect was
the �rst to be developed, in the form of Grothendieck toposes, which are universes of
sets which vary continuously over some (generalized) form of space. More generally,
the logical aspect of topos theory is emphasized in Lawvere and Tierney’s notion of an
elementary topos, an abstract and axiomatic generalization of Grothendieck’s concept.

�ese two aspects of topos theory go hand-in-hand: whilst the laws of an elemen-
tary topos are o�en justi�ed by appealing to their realization in a Grothendieck topos,
it is frequently easier to understand the complicated and fully analytic de�nitions of
objects in a Grothendieck topos by relating them to their logical counterparts. We will
try and appeal to both the geometric and the logical intuitions in this tutorial where
possible.

2 Presheaves and presheaf toposes

Presheaves are the simplest way to capture mathematical objects which vary over a
category C : Cat.

De�nition 2.1 (Presheaf). A presheaf on C : Cat is a functor F : Cop → Set.

Unfolding de�nitions, this means that for every object Ψ : C, we have a set
F(Ψ) : Set; moreover, for any morphism ψ : HomC(Φ,Ψ), we have an induced
restriction map F(ψ) : F(Ψ)→ F(Φ) which preserves identities and composition. �e
presheaves on C form a category, which we will call Ĉ : Cat. When the presheaf F : Ĉ
is understood from context, we will write m ·ψ : F(Φ) for F(ψ)(m).

De�nition 2.2 (Yoneda embedding). We have a full and faithful functor y : C→ Ĉ
called the Yoneda embedding, which is de�ned as follows:

y(Ψ) , HomC(−,Ψ)

A functor which is isomorphic to y(Ψ) is called representable by Ψ.
2�at is, if we are content to temporarily ignore the ma�er of predicativity; in practice, this can be dealt

with through the notion of a “pretopos” with a large subobject classi�er, or a hierarchy thereof.
3�ere are other options too, such as the gros topos of sheaves over the category of separable locales

equipped with the open cover topology [5, 6].
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De�nition 2.3 (Sieve). A sieve on an object Ψ : C is a subfunctor of the presheaf
represented by Ψ, i.e. S� y(Ψ) : Ĉ.4 In particular, a sieve on Ψ picks out functorially
a collection of arrows ending in Ψ; the maximal sieve is y(Ψ) itself, which chooses all
arrows ending in Ψ.

2.1 Sieves and subobjects

In classical set theory, every subset A ⊆ B has a characteristic function charA : B→ 2,
de�ned as follows:

charA(b) ,

{
0 if b ∈ A
1 if b 6∈ A

In toposes, there is always an object analogous to 2, called the subobject classi�er ;
this object is always wri�enΩ. Following [8], a subobject classi�er is a monomorphism
true : 1� Ωwhich for any monomorphism f : A� B induces a unique characteristic
morphism charf : B→ Ω such that the following diagram is a pullback:

A 1

B Ω

!

f true

charf

In the category of sets, the subobject classi�er is simply the two-element set; its
construction in a presheaf topos is more complicated, essentially because it must be
made to respect the fact that the objects under consideration are “in motion”.

The subobject classifier in a presheaf topos �e subobject classi�er in a presheaf
topos is de�ned using sieves:

Ω(Ψ) , {S | S� y(Ψ) : Ĉ}

(S · ψ : Φ→ Ψ )(X) , {φ : X→ Φ | ψ ◦ φ ∈ S(X) }

trueΨ , y(Ψ)

Remark 2.4. It may not be immediately clear why the subobject classi�er is de�ned
in this way: what does the collection of sieves have to do with 2 in (classical) set
theory? One way to understand what is happening is to observe howΩ behaves when
our base category C is chaotic, in the sense that every two objects is connected by
exactly one arrow. If C is chaotic, then either y(Ψ)(Φ) = 1 for everyΦ : C; therefore,
the judgment S� y(Ψ) : Ĉ comes out to mean simply S(Ψ) ⊆ 1 , i.e. S(Ψ) ∈ P(1).
�erefore, Ω(Ψ) = P(1) = 2. An analogous argument can be made in case C is a
groupoid.

4Usually, an alternative de�nition is given in terms of “sets of arrows closed under precomposition”, but
we prefer a de�nition with fewer moving parts. In practice it will be useful to use the alternative de�nition
when reasoning.
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Understanding Ω using Yoneda’s Lemma as a weapon Much like how a can-
didate construction of the exponential in a functor category can be hypothesized using
an insight from the Yoneda Lemma, it is also possible to apply the same technique to
the construction of the subobject classi�er in a presheaf category.

Based on our intention thatΩ shall be a construction of the subobject classi�er,
we want to identify maps φ : X→ Ω with subobjects of X : Ĉ, i.e. we intend to
exhibit a bijection [X,Ω] ∼= Sub(X). Now, cleverly choose X , y(U): then we have
[U,Ω] ∼= Sub(X). But the Yoneda Lemma says that [y(U),Ω] ∼= Ω(U)! �erefore, we
may take as a scienti�c hypothesis the de�nitionΩ(U) , Sub(y(U)). It remains to
show that this de�nition exhibits the correct properties (exercise for the reader).

3 Generalized topologies

Let us remark that so far, we have described via presheaves a notion of variable set
which requires only functoriality; in case we are varying over a poset, this corresponds
to monotonicity in Kripke models. We will now consider a notion of set which varies
continuously, a property which corresponds to local character in Beth models.

�e de�nition of a Grothendieck topology is quite complicated, but we will show
how to understand it conceptually using the logical perspective that we alluded to in
the introduction.

De�nition 3.1 (Grothendieck Topology [8]). A Grothendieck topology is, for each
object Ψ : C, a collection J(Ψ) of sieves on Ψ; a sieve S ∈ J(Ψ) is called a covering sieve.
To be called a topology, the predicate J must be closed under the following rules:

y(Ψ) ∈ J(Ψ)
maximality

S ∈ J(Ψ) ψ : Φ→ Ψ

S ·ψ ∈ J(Φ)
stability

S ∈ J(Ψ) R ∈ Ω(Ψ) ∀ψ ∈ S(Φ). R ·ψ ∈ J(Φ)

R ∈ J(Ψ)
transitivity

�e above rules seem fairly poorly-motivated at �rst; however, it is easy to un-
derstand their purpose when one considers the logical perspective. First, one should
recognize that the stability law above is a disguised form of functoriality for J: that is,
it ensures that J itself be a presheaf, namely, a subobject ofΩ.

Now, every subobject induces a characteristic map intoΩ, and it turns out that it
will be far more informative to ignore the analytic aspects of J and focus only on the
properties of its characteristic map j : Ω→ Ω , charJ:

J 1

Ω Ω

!

true

j , charJ

�is perspective, to be developed in the next section, is justi�ed by the fact that in
a topos, subobjects are completely determined by their characteristic maps.
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3.1 The logical view

De�nition 3.2. For an arbitrary topos E, a Lawvere-tierney operator (also called a
Lawvere-Tierney topology, local operator, or nucleus) is a map j : Ω→ Ω which
exhibits the following characteristics:

j ◦ true = true (3.1)
j ◦ j = j (3.2)

j ◦∧ = ∧ ◦ (j× j) (3.3)

In other words, j is a ∧-preserving closure operation in the internal logic of the
topos. �e above requirements can be rephrased equivalently in the internal language
of E in the following way:

p : Ω | p ` j(p) (3.4)
p : Ω | j(j(p)) ` j(p) (3.5)

p,q : Ω | j(p)∧ j(q) ` j(p∧ q) (3.6)

�ere is, however, a be�er-motivated way to state these laws which makes more
sense from a logical perspective; in particular, axiom 3.6 can be replaced with the more
intuitive internal monotonicity condition that j shall preserve implication:

p,q : Ω | p⇒ q ` j(p)⇒ j(q) (3.7)

We will restate without proof the following result from [8]:

Proposition 3.3 (Lawvere-Tierney subsumes Grothendieck). In a presheaf topos Ĉ, a
subobject J� Ω : C is a Grothendieck topology i� its characteristic map charJ : Ω→ Ω
is a Lawvere-Tierney topology.

Notation 3.4. It is common to write j for charJ to mean that Lawvere-Tierney topology
which corresponds to the Grothendieck topology J.

Relating the logical and the geometric views Each of the rules for a Grothendieck
topology corresponds to an intuitive logical requirement: maximality, i.e. the inclusion
of represented functors as covers, corresponds to the requirement that our local opera-
tor shall preserve truth; stability corresponds to the requirement that J shall in fact be
a presheaf; the transitivity law corresponds exactly to axioms 3.5 and 3.7, composed to
form the Kleisli extension for the monad j.
Remark 3.5 (Pretopologies and coverages). �ere are several other ways to de�ne some
form of topology on a category, including coverages and pretopologies. In some contexts,
these are allegedly easier to work with, but they tend to impose extra requirements
on the category C, and end up obscuring the crisp logical character of topologies and
their correspondence with modal operators. From a logical perspective, the concept of
a “pretopology” is essentially meaningless, so we prefer to avoid it.
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3.2 Covering sieves as a poset

As we have described it, the covering sieves J(Ψ) form a set, but we can also regard
J(Ψ) as a poset by imposing the inclusion order.

De�nition 3.6 (Filtered poset). A poset P : Pos is �ltered or directed i� it is inhabited,
and every pair of elements m,n : P has an upper bound l : P, i.e. both m 6 l and
n 6 l.

Lemma 3.7 (Covers are co�ltered). For every Ψ : C the poset J(Ψ) : Pos is co�ltered,
i.e. the opposite poset J(Ψ)op : Pos is �ltered.

Proof. First, J(Ψ) is inhabited by the maximal sieve y(Ψ), so it su�ces to show that for
any S, T : J(Ψ) we can exhibit S ∩ T : J(Ψ) such that S ∩ T ⊆ S and S ∩ T ⊆ T . �e
construction of this intersection is clear, but we need to show that it is still a cover.

At an analytic level, we can use the transitivity axiom of a Grothendieck topology
to show that the intersection of two covering sieves is a covering sieve. But it is more
clear and less bureaucratic to work internally, using axiom 3.3 for a Lawvere-Tierney
topology which states that j ◦∧ = ∧ ◦ (j× j). Because j : Ω→ Ω is the characteristic
map of the subobject J� Ω : Ĉ, this really means that S ∩ T ∈ J ⇔ S ∈ J∧ T ∈ J
from an internal perspective, which is precisely what we were trying to prove.

4 Sheaves on a site

A site is a category C together with a topology J� Ω : Ĉ. We will now proceed to
give perspicuous de�nitions of what it means for a presheaf F : Ĉ to be separated and
a sheaf respectively.

�ere are many di�erent de�nitions of separated presheaves and sheaves, most
of which involve a number of complicated analytic conditions; we prefer to give an
equivalent, simpler de�nition (which is usually presented as a theorem).

First, observe that for any sieve S ∈ Ω(Ψ), we have a canonical function between
hom-sets i∗S : [y(Ψ),F]→ [S,F] as follows:

y(Ψ) F

S

m

iS
i∗Sm

De�nition 4.1. �e presheaf F : Ĉ is separated i� for every S ∈ Ω(Ψ), the induced
map between hom-sets i∗S : [y(Ψ),F]→ [S,F] is a monomorphism. F is a sheaf i�
this map is also an isomorphism.

It is worth taking a moment to cultivate some insight as to what is going on here.
First, recall that by the Yoneda lemma, we can identify elements of F(Ψ) with natural
transformations from the maximal sieve, i.e. [y(Ψ),F]. So, shea�ood for F is really
saying that as far as F is concerned, the elements of F(Ψ) can be identi�ed with natural
transformations from any sieve that covers Ψ, not just the maximal one.
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De�nition 4.2 (Matching families and amalgamations). A natural transformation
m : [S,F] for S ∈ J(Ψ) is usually called a matching family for S; then, the member of
F(Ψ) which is determined by the sheaf-induced isomorphism (and the Yoneda lemma)
is called an amalgamation.

Notation 4.3. As a ma�er of convention, we will use Latin le�ersm,n, . . . to range
over elements of a presheaf, and German le�ers m, n, . . . to range over matching
families for a presheaf.

5 Sheafification: the essence of toposes

For any Grothendieck topology J � Ω : Ĉ, there is a canonical way to turn a
presheaf on C into a sheaf on the site (C, J). Later on, we will see that this is actually
this can actually be taken as de�nitive without explicitly invoking Grothendieck (or
Lawvere-Tierney) topologies, exposing the principal contradiction of sheaf theory as
the adjunction induced by a lex re�ective subcategory of a topos.

To begin with, we will exhibit the J-sheaves as a lex re�ective subcategory of
the topos Ĉ in the sense that we have a geometric morphism a : Ĉ→ Sh(C, J) a

ι : Sh(C, J) ↪→ Ĉ , where ι is the (full and faithful) inclusion of sheaves into presheaves
and a is a “shea��cation” functor.

5.1 The plus construction

Shea��cation in presheaf toposes is obtained from the iterated application of something
called “Grothendieck’s plus construction”, which we de�ne below, �xing a presheaf
F : Ĉ:

(−)+ : Ĉ→ Ĉ

F+(Ψ) , colimS:J(Ψ)op [S,F]

(S,m) · ψ : Φ→ Ψ , (S ·ψ,m ◦ (ψ ◦−))

( f : F → G )
+

Ψ
(S,m) , (S, f ◦m)

In the above colimiting construction, we write J(Ψ) for the poset of covering sieves on
Ψ.

In other words, the plus construction for a presheaf replaces its elements by covering
sieves equipped with matching families: conceptually, this means equipping a presheaf
with “formal amalgamations”. We will see that this process is remarkably well-behaved.

Lemma 5.1 (Equality in F+). �e following are equivalent:

1. (R,m) = (S, n) ∈ F+(Ψ)

2. (R,m) ∼ (S, n), where ∼ is the smallest equivalence relation which relates (R,m)
and (S, n) when R ⊆ S ψ : Φ→ Ψ ∈ R(Φ), we have m(ψ) = n(ψ) ∈ F(Φ).
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3. �ere is a common re�nement T ⊆ R ∩ S ∈ J(Ψ) such that for all ψ : Φ→ Ψ ∈
T(Φ), we have m(ψ) = n(ψ) ∈ F(Φ).

Proof. (1) ⇔ (2) is the de�nition of equality for a colimit in Set. (1) ⇔ (3) is an
equivalent characterization of equality for a �ltered colimit, i.e. a colimit of a digram
whose domain is a �ltered category. We have shown that J(Ψ)op is indeed �ltered in
Lemma 3.7.

The unit to the plus construction We can also form a unit natural transformation
ηF+ : F → F+ using the maximal sieve:

ηF+ : F → F+(
ηF+
)
Ψ
(m) , (y(Ψ),m ·−)

Lemma 5.2 (Executing formal amalgamations). When F : Sh(C, J) is a sheaf, the unit
ηF+ : F → F+ is an isomorphism.

Proof. �is holds by de�nition; the action of the inverse to the unit is to use the sheaf
structure to turn a formal amalgamation (a covering sieve together with a matching
family) into the appropriate unique element of F.

Notation 5.3. We will write glueF : F+ → F for the inverse to ηF+.

Now, we reproduce a lemma from [8], giving a bit more detail.

Lemma 5.4. For F : Sh(C, J) and G : Ĉ, any map f : G→ ιF in Ĉ factors as f = f̃ ◦ ηG+
for some unique f̃ : G+ → ιF:

G G+

ιF

ηG
+

f f̃
(5.1)

Proof. Explicitly, we can construct a candidate de�nition of f̃ using the functoriality
of the plus construction and Lemma 5.2:

G+ ιF+ ιF
f+

f̃

glueF

First, we have to show that glueF ◦ f+ ◦ ηG+ = f; this is easily established:

m (y(Ψ),m ·−) (y(Ψ), fΨ(m) ·−) fψ(m)
(ηG

+)Ψ f+Ψ glueΨF
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Next we have to show glueF ◦ f+ is the only possible f̃ such that our diagram
commutes. Fix (S,m) ∈ G+(Ψ); we will show that f̃Ψ(S,m) must be glueΨF(f+Ψ(S,m)).
For all ψ ∈ S(Φ), we have the following:

f̃Ψ(S,m) ·ψ = f̃Φ((S,m) ·ψ) (Naturality)

= f̃Φ(S ·ψ,m ◦ (ψ ◦−)) (De�nition)

Observe that because ψ ∈ S(Φ), the sieve S ·ψ is in fact the maximal sieve y(Φ). So
we have:

f̃Ψ(S,m) ·ψ = f̃Φ(y(Φ),mΦ(ψ) ·−)

= f̃Φ(η
G
+(mΦ(ψ))) (de�nition)

= fΦ(mΦ(ψ)) (Diagram 5.1)

Now, because F is a sheaf, and S is a covering sieve and f ◦m : [S, ιF] is a matching
family, f̃Ψ(S,m) is the unique element n ∈ F(Ψ) such that n ·ψ = fΦ(mΦ(ψ)). In
other words f̃Ψ(S,m) = n = glueΨF(S, f ◦m), so it su�ces to con�rm that f+Ψ(S,m) =
(S, f ◦m).

Lemma 5.5. For any presheaf G : Ĉ, we have the identity
(
ηG+

)+
= ηG

+

+ : G+ → G++.

Proof. Working pointwise, we have the following:(
ηG+
)+
Ψ
(S,m) = (S,ηG+ ◦m)(

ηG
+

+

)
Ψ
(S,m) = (y(Ψ), (S,m) ·−)

We need to show that (S,ηG+ ◦m) = (y(Ψ), (S,m) ·−). By the de�nition of equality
for formal amalgamations (Lemma 5.1), it su�ces to show that for all ψ : Φ→ Ψ ∈
S(Φ) we have ηG+(mΦ(ψ)) = (S,m) ·ψ. Calculate:

(S,m) ·ψ = (S ·ψ,mΦ ◦ (ψ ◦−))

= (y(Φ),mΦ(ψ) ·−)

= ηG+(mΦ(ψ))

In the theorems below, we will follow in the broad strokes the proofs given in [8],
but giving more detail and using a more “nuts-and-bolts” style based on the view of
sieves as subfunctors and matching families as natural transformations.

�eorem 5.6. When F : Ĉ is any presheaf, its plus construction F+ : Ĉ is separated,
i.e. for any sieve S ∈ J(Ψ) the precomposition map between hom-sets induced by iS :
S� y(Ψ) is injective:

[y(Ψ),F+] [S,F+]
i∗S
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Proof. Fix two matching families m1,m2 : [y(Ψ),F+]. We need to show that if
m1 ◦ iS = m2 ◦ iS : [S,F+], then already m1 = m2 : [y(Ψ),F+].

By the Yoneda Lemma it su�ces to prove only m1 = m2 ∈ F+(Ψ) (de�ning
mi , mi(idΨ)), and we can rewrite our assumption to say that for all ψ ∈ S(Φ) we
havem1 ·ψ = m2 ·ψ ∈ F+(Φ).

Letmi ≡ ( Ti ∈ J(Ψ) , ni : [Ti,F] ); by Lemma 5.1, our equality hypothesis is the
same as to say that there exists common re�nements Tψ ⊆ (T1 ·ψ) ∩ (T2 ·ψ) such
that n1(ψ ◦ φ) = n2(ψ ◦ φ) ∈ F(X) for all φ : X→ Ψ ∈ Tψ(X).

We need to show that there exists a common re�nement T ⊆ T1 ∩ T2 such that
for all ψ : Φ→ Ψ ∈ T(Φ), we have n1(ψ) = n2(ψ) ∈ F(Φ). Now we will choose
T(X) , {ψ ◦ φ | ψ ∈ S(Φ) , φ ∈ Tψ(X) }; clearly T ⊆ T1 ∩ T2. It remains to show
the following:

1. T ∈ J(Ψ). Applying the transitivity axiom for covering sieves with S ∈ J(Ψ),
it su�ces to show that for all ψ ∈ S(Φ) we have T ·ψ ∈ J(Φ). Observe
that (T ·ψ)(X) ≡ {φ | ψ ◦ φ ∈ T(X) }, i.e. T ·ψ = Tψ which we have already
assumed to be a cover.

2. For allψ ∈ T(X), n1(ψ) = n2(ψ) ∈ F(X). Unfolding things, this means that for
all ψ ∈ S(Φ) and φ ∈ Tψ(X) we must show n1(ψ ◦ φ) = n2(ψ ◦ φ) ∈ F(X),
which we have already assumed.

�eorem 5.7. When F : Ĉ is a separated presheaf, its plus construction F+ : C is in fact
a sheaf, i.e. for any covering sieve S ∈ J(Ψ) the precomposition map between hom-sets
induced by iS : S→ y(Ψ) is bijective:

[y(Ψ),F+] [S,F+]
i∗S

Proof. Fix a matching family mS : [S,F+]; we need to exhibit a unique amalgamation
mS ∈ F+(Ψ) for mS. Because F+ is separated (�eorem 5.6), it su�ces to merely
exhibit some such amalgamation, since its uniqueness will follow.

First, observe that for each ψ : Φ→ Ψ ∈ S(Φ), the matching family gives a
“formal amalgamation” for some covering sieve, i.e. mS(ψ) ∈ F+(Φ) ≡ (Tψ, nψ) for
some Tψ ∈ J(Φ) and nψ : [Tψ,F].

Our task is to choose a suitable covering sieve R ∈ J(Ψ) , together with a matching
family mR : [R,F] so that we can de�nemS , (R,mR). Using a tactic similar to what
we did in the proof of �eorem 5.6, choose:

R(X) , {X Φ Ψ
φ ψ

| ψ ∈ S(Φ) , φ ∈ Tψ(X) }

As in �eorem 5.6, we have R ∈ J(Ψ) by the transitivity axiom. Now we need to
exhibit a matching family mR : [R,F] ; �rst de�ne its components as follows:

mXR(ψ ◦ φ) , nXψ(φ)
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Functionality To show that the components of this matching family are well-de�ned
(functional), �x φ1,φ2 : Tψ(X) such that ψ ◦ φ1 = ψ ◦ φ2; we need to show that
nXψ(φ1) = nXψ(φ2) ∈ F(X).

By naturality of mS, we have (Tψ · φ, nψ · φ) = (Tψ◦φ, nψ◦φ) ∈ F+(X) for all
φ : X→ Φ; by Lemma 5.1, this means that there is some family of covering sieves
Uψ,φ ⊆ (Tψ · φ) ∩ (Tψ◦φ) ∈ J(X) such that nΥψ(φ ◦ χ) = nΥψ◦φ(χ) ∈ F(Υ) for all
χ : Υ→ X ∈ Uψ,φ(Υ).

Because covering sieves are closed under intersection, we also have a cover
Uψ,φ1

∩Uψ,φ2
∈ J(X). Fixing χ : Υ→ X ∈ (Uψ,φ1

∩Uψ,φ2
)(Υ), calculate:

nXψ(φ1) · χ = nΥψ(φ1 ◦ χ) (naturality of nψ)

= nΥψ◦φ1
(χ) (see above)

= nΥψ◦φ2
(χ) (assumption)

= nΥψ(φ2 ◦ χ) (see above)

= nXψ(φ2) · χ (naturality of nψ)

Because F is separated, we have immediately our equality goal nXψ(φ1) = nXψ(φ2) ∈
F(X). �erefore, the components mXR are well-de�ned, i.e. functional.

Naturality We still have to show that this candidate de�nition of mR is in fact a
natural transformation. Fixing υ : X→ Υ, we have to show that the following diagram
commutes:

S(Υ) S(X)

F(Υ) F(X)

−·υ

mΥR mXR

−·υ

ψ ◦ φ ψ ◦ φ ◦ υ

nψ(φ) nψ(φ) · υ = nψ(φ ◦ υ)

−·υ

mΥR mXR

−·υ

In this way, the naturality of mR reduces directly to the naturality of nψ. We may now
de�nemS , (R,mR). All that remains is to show that for all ψ : Φ→ Ψ ∈ S(Φ), we
havemS ·ψ = mS(ψ) ∈ F+(Φ).

First, observe that R ·ψ = Tψ, and that (mR ·ψ)(φ) = mR(ψ ◦ φ) = nψ(φ),
whencemS ·ψ = (Tψ, nψ) = mS(ψ).

Corollary 5.8. For any presheaf F : Ĉ, the double application of the plus construction
F++ is a sheaf, i.e. F++ : Sh(C, J).

Proof. By �eorems 5.7 and 5.6.

5.2 Sheafification

�eorem 5.9 (Shea��cation). We are now equipped to show that the J-sheaves comprise
a lex re�ective subcategory of the presheaf topos C, de�ning aF , F++. In other words,

11



1. ι : Sh(C, J)→ Ĉ is full and faithful.

2. a : Ĉ→ Sh(C, J) preserves �nite limits.

3. We have the adjunction a a ι.

Proof. Clearly ι is full and faithful, because it is the identity on morphisms. To show
that a preserves �nite limits, it su�ces to show that the plus construction preserves
�nite limits in Ĉ. Because �nite limits in a sheaf topos are formed pointwise, it su�ces
to show that �nite limits are preserved at the level of sets. �is follows from the fact
that the plus construction is a �ltered colimit, and that [S,−] preserves limits.

Finally, to show that a a ι, we must exhibit the following bijection of hom-sets,
natural in F,G (we leave naturality as an exercise to the reader):

aG→ F : Sh(C, J)

G→ ιF : Ĉ

We will construct the bijection of maps in the diagrams below. Because maps
in sheaves are the same as maps in presheaves, for simplicity’s sake the following
diagrams will reside in Ĉ, regarding each sheaf as a presheaf. �e �rst diagram is
completed using composition with the unit to the plus construction; the second diagram
is completed using two applications of Lemma 5.4.

G G+ aG

F

ηG
+

f] , f ◦ ηG+

+ ◦ ηG+

ηG+

+

f

G G+ aG

ιF

ηG
+

f
f̃

ηG+

+

f] , (̃f̃)

Next we show that this actually constitutes a bijection; the �rst direction is almost
immediate.

(f])
] = (̃f̃) ◦ ηG+

+ ◦ ηG+
= f̃ ◦ ηG+ (Lemma 5.4)
= f (Lemma 5.4)

�e other direction will require some e�ort and careful manipulation, using

12



Lemma 5.4 and Lemma 5.5.(
f]
)
]
=

˜̃
f ◦ ηG+

+ ◦ ηG+

= glueF ◦
(
glueF ◦

(
f ◦ ηG+

+ ◦ ηG+
)+)+

(de�nition of f̃)

= glueF ◦
(
glueF ◦ f+ ◦

(
ηG

+

+

)+
◦
(
ηG+
)+)+

(functoriality)

= glueF ◦
(
f̃ ◦
(
ηG

+

+

)+
◦
(
ηG+
)+)+

(de�nition of f̃)

= glueF ◦
(
f̃ ◦ ηaG+ ◦ ηG

+

+

)+
(Lemma 5.5)

= glueF ◦
(
f ◦ ηG+

+

)+
(Diagram 5.1)

= glueF ◦ f+ ◦
(
ηG

+

+

)+
(functoriality)

= glueF ◦ f+ ◦ ηaG+ (Lemma 5.5)
= f (Diagram 5.1)

We have shown that Sh(C, J) is a lex re�ective subcategory of Ĉ.

5.3 The Fetishism of Sheaves, and the Secret Thereof

A sheaf appears, at �rst sight, a very trivial thing, and easily understood. Its analysis
shows that it is, in reality, a very queer thing, abounding in metaphysical subtleties
and topological niceties.5 So far as it is a presheaf enjoying certain conditions, there
is nothing mysterious about it, whether we consider it from the point of view of the
espace étalé, or as a continuously varying family of sets.

But just so soon as the collection of sheaves for a topology stands as a body in
relation to all other objects in a topos, it acquires certain characteristics which at
�rst set it apart from other collections of objects, but eventually come to be fully
constitutive of the sheaf concept. I am of course referring to the characteristic of being
a lex re�ective subcategory of the presheaf topos (�eorem 5.9), which we will see is in
fact coextensive with the notion of sheaf subcategory.

Fix a category E and a lex re�ective subcategory F ↪→ E. In particular, we have
f∗ a f∗ : F ↪→ E arranged in the following way:

F E⊥

f∗

f∗

For convenience, we assume without loss of generality that F is replete (closed under
isomorphism).

5With apologies to Karl Marx [9].
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Notation 5.10. For readability, we will �x the following notation for the monad and
comonad of the above adjunction:

© : E→ E , f∗ ◦ f∗

� : F→ F , f∗ ◦ f∗
Lemma 5.11. With η : idE →© the unit of our adjunction, we have the identity
η©A =©ηA :©A→©©A.

Proof. Since the monad of a replete re�ective subcategory is idempotent [3], its the
components of its multiplication operator µ :©©→© are isomorphisms. �erefore,
to show that η©A =©ηA, it su�ces to show that µA ◦ η©A = µA ◦©ηA, but this
just the unit axiom of the monad.

Lemma 5.12. For any two maps l1, l2 :©C→ f∗D, from l1 ◦ ηC = l2 ◦ ηC we can
conclude l1 = l2.

Proof. Suppose l1 ◦ ηC = l2 ◦ ηC : C→ f∗D; then their adjoint transposes are equal
too:

(l1 ◦ ηC)] = (l2 ◦ ηC)] : f∗C→ D

Now calculate:

(li ◦ ηC)] = εD ◦ f∗(li ◦ ηC)

f∗(li ◦ ηC)] = f∗εD ◦©li ◦©ηC
= f∗εD ◦©li ◦ η©C (Lemma 5.11)
= f∗εD ◦ ηf∗D ◦ li (naturality)
= li (adjunction)

Since have f∗(l1 ◦ ηC)] = f∗(l2 ◦ ηC)], by the above reasoning we have l1 = l2.

Lemma 5.13. If E is �nitely complete, then so is F.

Proof. Fix a category J : Cat and a diagram (functor) D : J→ F. Fix a limiting cone(
A, [αi : A→ f∗Di]i:J

)
in E. We will show that the unit ηA : A→©A in E is an

isomorphism, and therefore A ∈ F (whence F is closed under �nite limits).
Using the adjunction, each edgeαi : A→ f∗Di of our cone in E may be transposed

into a unique map α]
i : f
∗A→ Di in F. We can use this to form another cone in E:(
©A,

[
f∗α

]
i :©A→ f∗Di

]
i:J

)
Using the universal property of the limit in E, we acquire a unique map u :©A→ A

such that for every i : J, we have f∗α]
i = αi ◦ u :©A→ f∗Di. Observe that we have

also f∗α]
i ◦ ηA = αi : A→ f∗Di:

f∗α
]
i ◦ ηA = f∗(εDi ◦ f∗αi) ◦ ηA

= f∗εDi ◦©αi ◦ ηA (reassociate)
= f∗εDi ◦ ηf∗Di ◦ αi (naturality)
= αi (adjunction)
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Now we can show that u is a two-sided inverse to ηA. To see that u ◦ ηA = idA,
calculate:

f∗α
]
i = αi ◦ u (assumption)

f∗α
]
i ◦ ηA = αi ◦ u ◦ ηA

αi = αi ◦ u ◦ ηA (see above)

Now it is plausible that u ◦ ηA = idA, and it is in fact the case because of the unique-
ness of mediating maps induced by limiting cones. To see that ηA ◦ u = id©A, by
Lemma 5.12 it su�ces to show that ηA ◦ u ◦ ηA = ηA, and this follows directly from
the other direction of the isomorphism.

Lemma 5.14. If E has exponentials, then so does F.

Proof. Todo.

Corollary 5.15. F is cartesian closed.

Lemma 5.16. If E has a subobject classi�er, then so does F.

Proof. Todo.

Corollary 5.17. If E is a topos, then so is F.
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6 Applications and examples

We will now survey a few useful topologies.

6.1 Dense and atomic topologies

De�nition 6.1 (Dense topology). �e dense topology is de�ned as follows:

Jdense(Ψ) , { S ∈ Ω(Ψ) | ∀ψ : Φ→ Ψ. ∃φ : X→ Φ. ψ ◦ φ ∈ S(X) }

Lemma 6.2 (Aromatherapy). When distilled into its pure essence as a Lawvere-Tierney
local operator (De�nition 3.2), the dense topology corresponds classically to the double-
negation modality ¬¬.6

Proof. It su�ces to “compile” double-negations from the internal language of the topos
into statements about sieves. Recall that S ∈ J(Ψ) i� Ψ 
 S = >, where > , y(Ψ)
is the maximal sieve. First, we unfold the meaning of Ψ 
 ¬¬ S = > using the
Beth-Kripke-Joyal semantics of the topos as a weapon:

Ψ 
 ¬¬ S = > (6.1)

∀ψ : Φ→ Ψ. ¬(Φ 
 ¬ S ·ψ = > ) (6.2)

∀ψ : Φ→ Ψ. ¬(∀φ : X→ Φ. ¬(X 
 S ·ψ · φ = > )) (6.3)

∀ψ : Φ→ Ψ. ∃φ : X→ Φ. X 
 S ·ψ · φ = > (6.4)

∀ψ : Φ→ Ψ. ∃φ : X→ Φ. X 
 S · (ψ ◦ φ) = > (6.5)

Now it su�ces to show that X 
 S · (ψ ◦ φ) = > i� ψ ◦ φ ∈ S(X). (⇒) Unfolding
the meaning of our assumption, we have for all ρ : Y → X thatψ ◦ φ ◦ ρ ∈ S(Y). Now
choose Y , X and ρ , idX; therefore ψ ◦ φ ∈ S(X). (⇐) Now suppose ψ ◦ φ ∈ S(X).
We have to show that for all ρ : Y → X, then ψ ◦ φ ◦ ρ ∈ S(Y). �is follows because
sieves are closed under precomposition.

Remark 6.3. Observe the essential use of De Morgan’s duality in the passage be-
tween 6.3 and 6.4 above. �e dense topology does not correspond to the double
negation topology in a constructive metatheory; moreover, the version of the dense
topology which does correspond to double negation o�en does not su�ce for standard
applications in a constructive metatheory, as the author observed in [14].

Applications of the dense topology �e most famous use of the dense topology
qua double negation is in modern proofs of the independence of the Continuum
Hypothesis. Le�ing P : Pos be a forcing poset, the sheaves on the site (P, Jdense)
form a boolean topos from which it is possible to obtain a model of ZFC in which
the continuum hypothesis fails. �e reader is referred to [8] for a summary of this
construction.

6�e de�nition of the dense topology that we have assumed is not, however, equivalent to the double
negation topology in a constructive metatheory, since the equivalence relies on De Morgan duality [12, 4].
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Another instance of the dense topology in practice is in its incarnation as the atomic
topology, which can be imposed on any site which satis�es the right Ore condition
de�ned below.

De�nition 6.4 (Ore condition). A category C satis�es the right Ore condition if ev-
ery pair of morphisms ψ0 : Φ0 → Ψ and ψ1 : Φ1 → Ψ can be completed into a
commutative square:

Φ Φ0

Φ1 Ψ

ψ0

ψ1

Having pullbacks is a su�cient condition, but not a necessary one.

De�nition 6.5 (Atomic topology). If C satis�es the right Ore condition from De�ni-
tion 6.4, then it is possible to impose the atomic topology on C, where all inhabited
sieves7 are covering:

Jat(Ψ) , { S ∈ Ω(Ψ) | ∪ΦS(Φ) inhabited }

If the reader prefers to work with pretopologies or coverages, they should be aware
that the atomic topology is the one generated from singleton covering families.

Applications of the atomic topology Le�ing Inj : Cat be the category of �nite
sets and only injective maps between them, the topos of sheaves on the site (Injop, Jat)
is known as the Schanuel topos, and is equivalent to the category of nominal sets [10].
Among other things, the geometry and logic of the Schanuel topos accounts for
constructions which involve an abundance of atomic names which may be compared
for equality.

It is helpful to consider what characteristics this sheaf subcategory has which Înjop

lacks. Because constructions within this presheaf topos must be stable under only
injective maps of name contexts, it is clear that Înjop justi�es operations which depend
on apartness of names.

In particular, de�ning the presheaf of “available names” A , y({•}) as the obvious
representable functor, we can de�ne the following natural transformation:

test : A× A→ 2

testΨ(α,β) ,

{
t if α = β

f if α 6= β

�e above is well-de�ned/natural because injective maps are precisely those which
preserve apartness.

7In classical sheaf theory, the covering sieves for the atomic topology are the non-empty ones; however,
in a constructive metatheory, this is not enough to develop the necessary results, including Lemma 6.6.

17



In fact, we can do even more and use Day’s convolution to form a separating product
and separating function space in Înjop, adding a locally monoidal-closed structure which
is distinct from the standard locally cartesian closed structure of the topos [11].

At the level of the logic, this corresponds with four new connectives, {∗,−∗,∃∗,∀∗}
which are separating conjunction, separating implication, separating existential quan-
ti�cation, and separating universal quanti�cation respectively.8 We can also de�ne a
fresh name quanti�er Nx.φ(x) as ∀∗x : A.φ(x), but we will see that this quanti�er is
not yet well-behaved.

In particular, this presheaf topos is not closed under a crucial principle, which is
the “abundance” of fresh names. In particular, the principle ( Nx.φ(α))⇒ φ(α) fails
to hold in the internal logic of Înjop. �is principle, most properly understood as an
instance of local character, is precisely what the sheaf subcategory Sh(Injop, Jat) is
closed under.

As soon as the atomic topology has been imposed, the “freshness” quanti�er
becomes self-dual, in the following sense:

∃∗x : A.φ(x,α) = Nx.φ(x,α) = ∀∗x : A.φ(x,α)

Lemma 6.6. �e atomic topology coincides with the dense topology.

Proof. (⇒) Suppose S ∈ Jat(Ψ), i.e. S ∈ Ω(Ψ) and∪ΦS(Φ) inhabited . Fixψ : Φ→ Ψ;
we have to exhibit some φ : X→ Φ such that ψ ◦ φ ∈ S(X). By assumption, there is
some Υ : C for which we have some ψ ′ : Υ→ Ψ such that ψ ′ ∈ S(Υ); by the right
Ore condition (De�nition 6.4), we have some X : C with the following property:

X Φ

Υ Ψ

φ

υ ψ

ψ′

Because sieves are closed under precomposition, we have ψ ′ ◦ υ ∈ S(X); because the
diagram above commutes, we therefore have ψ ◦ φ ∈ S(X).

(⇐) Suppose S ∈ Jdense(Ψ), i.e. for any ψ : Φ→ Ψ there exists some φ : X→ Φ
such that ψ ◦ φ ∈ S(X). We have to exhibit some Υ : C together with some ψ ′ :
Υ→ Ψ such that ψ ′ ∈ S(Υ). Choose Φ , Ψ and ψ , 1; then, we have some
φ : X→ Ψ such that φ ∈ S(X). �en choose Υ , X and ψ ′ , φ.

Remark on constructivity One should be cautious about the numerous results in
topos theory of the form “Any topos with property X is boolean” (e.g. “well-pointed”),
which, far from elucidating an essential consequence of the property X, merely expose
a leakage of information from the (Platonistic) external world into the topos. �is
kind of glitch serves only to underscore the essentially Tarskian deviation [7] which
classical topos theory has inherited from old-fashioned mathematics and semantics.

8Be cautious about trying to naı̈vely develop this logic in the subobject la�ice of the topos; Biering,
Birkedal et al have shown that this construction degenerates into standard structural logic [1]. However, at
the very least, the separating quanti�ers can be developed in a sensible way.
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To resist this deviation amounts to adopting Bishop’s dictum that meaningful
distinctions must be preserved; in doing so, we enter a profoundly alien world in
which, for instance, the Schanuel topos is not boolean. We do not take a strident
position on this here; our remarks are meant only to provide hope to the radical
constructivist that it is possible to use these tools without incidentally commi�ing
oneself to a classical ontology.
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